È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Viene presentato un protocollo per l'irradiazione automatizzata di fogli d'oro sottili con impulsi laser ad alta intensità. Il protocollo include una descrizione dettagliata del processo di fabbricazione del bersaglio di microlavorazione e una guida dettagliata su come gli obiettivi vengono portati al fuoco del laser a una velocità di 0,2 Hz.
Descritta è una procedura sperimentale che consente l'irradiazione laser ad alta potenza di bersagli microfabbricati. I bersagli vengono portati a fuoco al laser da un circuito di feedback chiuso che opera tra il manipolatore di destinazione e un sensore di gamma. Il processo di fabbricazione del bersaglio è spiegato in dettaglio. Vengono forniti risultati rappresentativi dei fasci di protoni a livello MeV generati dall'irradiazione di fogli d'oro spessi 600 nm ad una velocità di 0,2 Hz. Il metodo viene confrontato con altri sistemi bersaglio ricostituibili e vengono discusse le prospettive di aumentare le velocità di tiro a oltre 10 Hz.
L'irradiazione laser ad alta intensità di bersagli solidi genera molteplici forme di radiazione. Uno di questi è l'emissione di ioni energetici con energie al livello mega elettronvolt (MeV)1. Una sorgente compatta di ioni MeV ha un potenziale per molte applicazioni, come l'accensione rapida dei protoni2,la radiografiaprotonica 3,la radioterapiaionica 4e la generazione di neutroni5.
Una sfida importante nel rendere pratica l'accelerazione degli ioni laser è la capacità di posizionare con precisione i bersagli su scala micrometrica all'interno della messa a fuoco del laser ad alta velocità. Per rispondere a questa sfida sono state sviluppate poche tecnologie di consegna target. I più comuni sono i sistemi di destinazione basati su nastri spessi su scala micrometrica. Questi bersagli sono semplici da reintegrare e possono essere facilmente posizionati all'interno del fuoco del laser. Il bersaglio a nastro è stato realizzato utilizzando nastri VHS6,copper7,Mylar e Kapton8. Il sistema di unità nastro è in genere costituito da due bobine motorizzate per l'avvolgimento e lo srotolamento e due perni verticali posizionati tra di loro per mantenere il nastro inposizione 9. La precisione nel posizionamento della superficie del nastro è in genere inferiore alla gamma Rayleigh del fascio di messa a fuoco. Un altro tipo di bersaglio laser ricostituibile sono i fogliliquidi 10. Questi obiettivi vengono consegnati rapidamente nella regione di interazione e introducono una quantità molto bassa di detriti. Questo sistema comprende una pompa per siringhe ad alta pressione fornita continuamente con liquido da un serbatoio. Recentemente, nuovi getti criogenici di idrogeno11 sono stati stabiliti come mezzi per fornire bersagli ultrathin, a bassa debris e ricostituibili.
Lo svantaggio principale di tutti questi sistemi target rimintegrabili è la scelta limitata di materiali e geometrie target, che sono dettati da requisiti meccanici come resistenza, viscosità e temperatura di fusione.
Qui viene descritto un sistema in grado di portare bersagli micromacchinato al centro di un laser ad alta intensità ad una velocità di 0,2 Hz. La micromacchinizzazione offre un'ampia scelta di materiali target in geometrie versatili12. Il posizionamento del bersaglio viene eseguito da un feedback a circuito chiuso tra un sensore di spostamento commerciale e un manipolatore motorizzato.
Il sistema di erogazione del bersaglio è stato testato utilizzando un sistema laser a contrasto elevato da 20 TW che fornisce impulsi laser lunghi 25 fs con 500 mJ sul bersaglio. Una revisione dell'architettura del sistema laser è fornita in Porat etal. Questo documento presenta un metodo dettagliato per la realizzazione e l'utilizzo di questo tipo di sistema e mostra i risultati rappresentativi dell'accelerazione degli ioni laser da bersagli in lamina d'oro ultrathin.
Lo spettrometro ionico Thomson Parabola (TPIS)15,16 mostrato nella figura 1 è stato utilizzato per registrare gli spettri energetici degli ioni emessi. In un TPIS, gli ioni accelerati passano attraverso campi elettrici e magnetici paralleli, il che li posiziona su traiettorie paraboliche nel piano focale. La curvatura parabolica dipende dal rapporto carica-massa dello ione, e la posizione lungo la traiettoria è impostata dall'energia dello ione.
Una piastra di imaging BAS-TR (IP)17 posizionata sul piano focale del TPIS registra gli ioni imping. L'IP è collegato a un feedthrough meccanico per consentire la traduzione in una nuova area prima di ogni scatto.
Access restricted. Please log in or start a trial to view this content.
1. Fabbricazione target
NOTA: La figura 2 e la figura 3 illustrano il processo di fabbricazione di fogli d'oro indipendenti.
2. Allineamento
NOTA: la figura 4 mostra l'impostazione dell'irradiazione bersaglio.
3. Sequenza di irradiazione e posizionamento automatico del bersaglio
Access restricted. Please log in or start a trial to view this content.
Questo sistema di consegna target è stato utilizzato per accelerare gli ioni dal lato posteriore di fogli d'oro spessi 600 nm. Quando irradiati con un'intensità laser normalizzatadi 0 = 5,6, questi ioni sono stati accelerati dal meccanismo di accelerazione della toere normale bersaglio (TNSA)21. In TNSA, la luce a bassa intensità che precedeva l'impulso laser principale ionizzava la superficie anteriore del foglio bersaglio. La forza ponderomotiva esercitata dall'impulso laser princi...
Access restricted. Please log in or start a trial to view this content.
Con alcune variazioni, il processo di fabbricazione target descritto in questo protocollo è comune (ad esempio, Zaffino et al.23). Qui, un passo unico che è fondamentale per il funzionamento del posizionamento automatico è l'aggiunta di sgrossatura su scala nanometrica in aree a forma di anello sul retro del wafer (passo 1.2.3). Lo scopo di questo passaggio è quello di aumentare la dispersione diffusa dell'incidente luminoso sul wafer in quelle aree. Il sensore di gamma brilla un raggio laser ...
Access restricted. Please log in or start a trial to view this content.
Gli autori non hanno interessi finanziari concorrenti.
Questo lavoro è stato supportato dalla Israel Science Foundation, dalla sovvenzione n. 1135/15 e dallo Zuckerman STEM Leadership Program, Israele, che sono grati. Riconosciamo anche il sostegno della Fondazione Pazy, della sovvenzione israeliana #27707241 e della sovvenzione NSF-BSF n. 01025495. Gli autori vorrebbero gentilmente riconoscere il Tel Aviv University Center for Nanoscience and Nanotechnolog
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
76.2 x 127mm EFL 90° Protected Gold 100Å Off-Axis Parabolic Mirror | Edmund optics | 35-535 | |
MicroTrak 3 LTS 120-20 | MTI Instruments | ||
Ultrafast high power dielectric mirrors for 800 nm | Thorlabs |
Access restricted. Please log in or start a trial to view this content.
An erratum was issued for: Automated Delivery of Microfabricated Targets for Intense Laser Irradiation Experiments. The author list was updated.
The author list was updated from:
Yonatan Gershuni1,2, Michal Elkind1,2, Itamar Cohen1,2, Aviad Tsabary1,2, Deep Sarkar1,2, Ishay Pomerantz1,2
1The School of Physics and Astronomy, Tel Aviv University,
2Tel Aviv University Center for Light-Matter Interaction
to:
Yonatan Gershuni1,2, Michal Elkind1,2, Dolev Roitman1,2, Itamar Cohen1,2, Aviad Tsabary1,2, Deep Sarkar1,2, Ishay Pomerantz1,2
1The School of Physics and Astronomy, Tel Aviv University,
2Tel Aviv University Center for Light-Matter Interaction
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon