È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In questo articolo

  • Riepilogo
  • Abstract
  • Introduzione
  • Protocollo
  • Risultati
  • Discussione
  • Divulgazioni
  • Riconoscimenti
  • Materiali
  • Riferimenti
  • Ristampe e Autorizzazioni

Riepilogo

Ridurre al minimo la variabilità della frazione di particelle all'interno di scaffold granulari facilita la sperimentazione riproducibile. Questo lavoro descrive i metodi per generare scaffold granulari con frazioni di particelle controllate per applicazioni di ingegneria tissutale in vitro .

Abstract

I microgel sono gli elementi costitutivi degli scaffold di particelle ricotto microporose (MAP), che fungono da piattaforma sia per la coltura cellulare in vitro che per la riparazione dei tessuti in vivo . In questi scaffold granulari, la porosità innata generata dallo spazio vuoto tra i microgel consente l'infiltrazione e la migrazione cellulare. Il controllo della frazione di vuoto e della frazione di particelle è fondamentale per la progettazione dello scaffold MAP, poiché la porosità è un segnale bioattivo per le cellule. I microgel sferici possono essere generati su un dispositivo microfluidico per dimensioni e forma controllate e successivamente liofilizzati utilizzando metodi che impediscono la fratturazione della rete polimerica. Dopo la reidratazione, i microgel liofilizzati portano a frazioni di particelle controllate negli scaffold MAP. L'implementazione di questi metodi per la liofilizzazione dei microgel ha portato a studi riproducibili che mostrano l'effetto della frazione particellare sulla diffusione delle macromolecole e sulla diffusione cellulare. Il seguente protocollo coprirà la fabbricazione, la liofilizzazione e la reidratazione di microgel per il controllo della frazione di particelle negli scaffold MAP, nonché la ricottura dei microgel attraverso la reticolazione bio-ortogonale per la coltura cellulare 3D in vitro.

Introduzione

Gli scaffold di particelle ricotto microporose (MAP) sono una sottoclasse di materiali granulari in cui i blocchi di costruzione del microgel (μgel) sono interconnessi per formare un'impalcatura porosa e di massa. Con la microarchitettura unica di questi scaffold granulari, la porosità innata generata dallo spazio vuoto tra microgel sferici interconnessi supporta l'infiltrazione e la migrazione accelerata delle cellule1. Gli elementi costitutivi in microgel degli scaffold MAP possono essere fabbricati da polimeri sia sintetici che naturali con modifiche chimiche2. I metodi qui descritti evidenziano specificamente l'uso d....

Protocollo

1. Fabbricazione di dispositivi microfluidici

  1. Litografia morbida
    NOTA: Questo protocollo descrive la fabbricazione di un dispositivo microfluidico focalizzato sul flusso progettato da de Wilson et al.9. Tuttavia, questo protocollo può essere utilizzato con qualsiasi progetto di dispositivo su un wafer SU-8. Il wafer può essere collegato a una capsula di Petri e quindi deve essere silanizzato per impedire l'aderenza del PDMS alle caratteristiche del wafer15.
    1. Miscelare la base di elastomero di polidimetilsilossano (PDMS) con l'agente di polimerizzazione (vedere la tabella dei ma....

Risultati

Lo scopo di questo protocollo è dimostrare la preparazione di scaffold di particelle ricotto microporose (MAP) con uno schema di reticolazione bio-ortogonale e frazioni di particelle controllate per la coltura cellulare 3D. In primo luogo, l'HA è stato modificato con gruppi pendenti norbornene da utilizzare sia nella formazione di microgel che nell'interconnessione per formare scaffold MAP. Utilizzando questi metodi, circa il 31% delle unità ripetute HA sono state modificate con successo con una maniglia funzionale no.......

Discussione

È stato dimostrato che la produzione microfluidica di microgel HA-NB genera microgel con una gamma più ristretta di distribuzione dimensionale rispetto alla produzione di lotti di emulsione 3,9. I microgel descritti in questo protocollo sono stati formulati utilizzando un reticolante con scissione MMP (AC-GGRDGPQGIWGQDRCG-NH2) per supportare la degradazione del materiale. Tuttavia, i microgel HA-NB possono anche essere reticolati utilizzando un link.......

Divulgazioni

ARA e TS hanno depositato un brevetto provvisorio su questa tecnologia.

Riconoscimenti

Gli autori desiderano ringraziare il National Institutes of Health, il National Institutes of Neurological Disorders and Stroke (1R01NS112940, 1R01NS079691, R01NS094599) e il National Institute of Allergy and Infectious Disease (1R01AI152568). Questo lavoro è stato eseguito in parte presso la Duke University Shared Materials Instrumentation Facility (SMIF), membro del North Carolina Research Triangle Nanotechnology Network (RTNN), che è supportato dalla National Science Foundation (numero di premio ECCS-2025064) come parte della National Nanotechnology Coordinated Infrastructure (NNCI). Gli autori desiderano ringraziare l'ex post-doc del laboratorio Dr. Lucas Schirmer....

Materiali

NameCompanyCatalog NumberComments
1 mL Luer-Lok syringe sterile, single use, polycarbonateBD309628
5 mL Luer-Lok syringe sterile, single use, polycarbonateBD309646
Alexa Fluor 488 C5 maleimideInvitrogenA10254For synthesis of fluorescently-labeled tetrazine
Alexa Fluor 647 PhalloidinInvitrogenA22287For staining cell culture samples
Aluminum foilVWR89107-726
Biopsy punch with plunger, 1.0 mmIntegra Miltex69031-01
Biopsy punch, 4 mmIntegra Miltex33-34
Blunt needle, 23 G 0.5", Non-Sterile, CappedSAI Infusion TechnologiesB23-50
Bottle-top vacuum filter, 0.22 μmCorningCLS430521
Calcium chlorideVWR1B1110For microgel washing buffer
Capillary-piston assemblies for positive-displacement pipettes, 1000 μL max. volumeRainin17008609
Capillary-piston assemblies for positive-displacement pipettes, 25 μL max. volumeRainin17008605
Capillary-piston assemblies for positive-displacement pipettes, 250 μL max. volumeRainin17008608
Countess Cell Counting Chamber SlidesInvitrogenC10228
Countess II FL Automated Cell CounterInvitrogenAMQAF1000
Centrifuge tube, 15 mLCELLTREAT667015B
Centrifuge tube, 50 mLCELLTREAT229421
Chloroform, ACS grade, Glass BottleStellar ScientificCP-C7304For synthesis of fluorescently-labeled tetrazine
Corona plasma gun, BD-10A High Frequency GeneratorETP11011
CryoTube Vials, Polypropylene, Internal Thread with Screw CapNunc368632
D1 mouse mesenchymal cellsATCCCRL-12424Example cell line for culture in MAP gels
DAPISigma-AldrichD9542For staining cell culture samples
Deuterium oxide, 99.9 atom% DSigma-Aldrich151882For NMR spectroscopy
Dialysis tubing, regenerated cellulose membrane, 12-14 kDa molecular weight cut-offSpectra/Por132703For purifying HA-NB and HA-Tet
Diethyl etherVWRBDH1121-4LPCFor synthesis of fluorescently-labeled tetrazine
DimethylformamideSigma-Aldrich277056For synthesis of fluorescently-labeled tetrazine
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) TCI-ChemicalsD2919For modifying HA
Dithiothreitol (DTT)Thermo ScientificR0861Non-degradable dithiol linker (substitute for MMP-cleavable peptide)
Dulbecco's Modified Eagle's Medium (DMEM), high glucose, w/ 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell cultureSigma-AldrichD6429-500MLFor D1 cell culture
EMS Paraformaldehyde, GranularVWR100504-162For making 4% PFA
Ethanol absolute (200 proof)KOPTEC89234-850
Fetal bovine serum (FBS)ATCC30-2020For D1 cell culture
Heating PlateKopf InstrumentsHP-4M
Hemacytometer with coverglassDaigger ScientificEF16034F
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)Sigma-AldrichH3375
Sodium hyaluronate, 79 kDa average molecular weight, produced in bacteria Streptococcus zooepidemicus, pharmaceutical grade, microbial contamination <100 CFU/g, bacterial endotoxins <0.050 IU/mgContiproN/A79 kDa average molecular weight was used for HA-Tet synthesis, but these methods could be adapted for other molecular weights.
IMARIS Essentials software packageOxford InstrumentsN/AMicroscopy image analysis software
Infusion pump, dual syringeChemyxN/A
KimwipeKimberly-Clark34120
Laboratory stand with support lab clampGeyer212100
Liquid nitrogenAirgasNI 180LT22
Lithium Phenyl(2,4,6-trimethylbenzoyl)phosphinateTCI-ChemicalsL0290
LyophilizerLabconcoN/ALabconco FreeZone 6 plus has been discontinued, but other lab grade console freeze dryers could be used for this protocol.
Methyltetrazine-PEG4-maleimideKerafastFCC210For synthesis of fluorescently-labeled tetrazine
2-(4-Morpholino)ethane Sulfonic Acid (MES)Fisher ScientificBP300-100For modifying HA
Micro cover glass, 24 x 60 mm No. 1VWR48393-106
Microfluidic device SU8 master waferFlowJemCustom design made either in-house in clean room or outsourced
Mineral oil, heavySigma-Aldrich330760
MMP-cleavable dithiol crosslinker peptide (Ac-GCRDGPQGIWGQDRCG-NH2)GenScriptN/A
5-Norbornene-2-methylamineTCI-Chemicals95-10-3For HA-NB synthesis
Packing tapeScotch3M 1426
ParafilmBemisPM996
PEG(thiol)2JenKem Technology USAA4001-1For synthesis of fluorescently-labeled tetrazine
Penicillin-Streptomycin, 10,000 units/mLThermo Fisher Scientific15140122For D1 cell culture
Petri dish, polystyrene, disposable, Dia. x H=150 x 15 mmCorning351058
Pluronic F-127Sigma-AldrichP2443For washing HMPs
Phosphate buffered saline (PBS) 1xGibco10010023
RainX water repellent glass treatmentGrainger465D20Synthetic hydrophobic treatment solution for microfluidic device treatment
RGD peptide (Ac-RGDSPGERCG-NH2)GenScriptN/A
Rubber bandsStaples112417
Sodium chlorideChem-Impex30070For dialysis
Span 80 for synthesisSigma-Aldrich1338-43-8
Sylgard 184 Silicone ElastomerElectron Microscopy Science4019862polydimethylsiloxane (PDMS) elastomer for making microfluidic devices and tissue culture devices
Syringe filter, Whatman Uniflo, 0.2 μm PES, 13 mm diameterCytvia09-928-066
Tetraview LCD digital microscopeCelestron44347
Tetrazine-amine HCl saltChem-Impex35098For HA-Tet synthesis
TriethylamineSigma-Aldrich471283For synthesis of fluorescently-labeled tetrazine
Tris(2-carboxyethyl)phosphine (TCEP)Millipore Sigma51805-45-9
Triton X-100VWR97063-864
Trypan blue solution, 0.4%Thermo Fisher Scientific15250061
Trypsin EDTA (0.25%), Phenol redFisher Scientific25-200-056For lifting adherent cells to seed in MAP gels
Tygon ND-100-80 Non-DEHP Medical Tubing, Needle Gauge=23, Wall Thickness=0.020 in, Internal diameter = 0.020, Outer diameter = 0.060 inThomas Scientific1204G82
UV curing system controller, LX500 LED OmniCure010-00369R
UV curing head, LED spot UVOmniCureN/A
UV light meter, TraceableVWR61161-386
Vacuum dessicatorBel-Art08-594-15C
X-Acto Z Series Precision Utility KnifeElmer'sXZ3601W

Riferimenti

  1. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature Materials. 14 (7), 737-744 (2015).
  2. Daly, A. C., Riley, L., Segura, T., Burdick, J. A.

Ristampe e Autorizzazioni

Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE

Richiedi Autorizzazione

Esplora altri articoli

BioingegneriaNumero 188

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati