Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study presents a simple and feasible method to assess the nonpreference resistance to white-backed planthoppers who are feeding on rice under laboratory conditions. Improvement of the strategies and makeup of the current method of identification of the resistance to white-backed and brown planthoppers are discussed.

Abstract

Exploiting insect-resistant rice germplasm resources and related genes is the primary need for breeding insect-resistant varieties, but the accuracy of the identification of insect-resistant phenotypes of rice is a major difficulty. It is urgent to develop a new method or improve existing methods to screen rice for insect resistance. This article describes a simple and feasible method to assess nonpreference-type resistance of rice to the white-backed planthopper (WBPH), Sogatella furcifera, in the laboratory. The preference of adult WBPHs feeding or inhabiting on maturing rice plants is continuously analyzed by pairwise comparison. The dynamic changes of WBPHs on rice plants are recorded and compared as an index of resistance identification. The current method is simply operable and easily observable and has a short cycle. The use of this method could be extended to investigate the feeding and oviposition preference of similar hemipterans, such as the brown planthopper (BPH), Nilaparvata lugens(Stål).

Introduction

Rice is a staple food for over one-third of the world's population, and more than 90% of rice is produced and consumed in Asia1,2. The WBPH and BPH are the most destructive pests of rice and a substantial threat to rice production3. From the perspective of cost and environment, the breeding and application of insect-resistant rice is the most effective approach to control the damage caused by planthoppers4,5,6. Accordingly, the screening of resistant rice germplasm resources is a key prereq....

Protocol

1. Preparation of planthoppers, rice plants, and the polyvinyl chloride cage

  1. Planthoppers
    1. Rear WBPHs on tillers of a susceptible rice variety called Taichung Native 1 (TN1) in insect-proof cages and let them reproduce naturally for generations. Choose long-winged, newly emerged female adults for further experiments.
      NOTE: WBPHs were provided by the Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences.
  2. Rice pl.......

Representative Results

There were three test rice lines used in this study. Rice line FY01 is WBPH susceptible and used as control group. Rice line HZ08 and HZ06 were transgenic lines in which the potential WBPH resistant X1 gene and X5 gene were introduced, respectively, based on the background of FY01. Therefore, a rice resistance comparison between HZ08/HZ06 and FY01 could reveal whether the corresponding inserted gene had a potential resistance function. In this study, the resistance of two rice plants in t.......

Discussion

Maturing rice plants release volatile secondary metabolites to control insect pests or reduce the mating capacity of these pests (such as in WBPHs) via a special physical structure on the leaf sheath surface, which is a key resistance mechanism13. In rice plants, the nonpreference is not only related to feeding but also associated with habitat and mating. However, current studies have focused on the nonpreference of nymphs4,12, and a new m.......

Acknowledgements

The authors are grateful to Dr. Lang Yang for feeding the white-backed planthoppers and culturing rice. This work was supported by Special Funds for the Industrial Development of the Dapeng New District, Shenzhen City (Grant No. KY20180216 and KY20180115).

....

Materials

NameCompanyCatalog NumberComments
climate-controlled roomNingbo Jiangnan Instrument FactorySZJYS2013temperature, relative humidity, photoperiod control
glass tube with sponge stopper//diameter 2 cm and height 15 cm
handmade suction trap///
insect-proof cage //200-mesh, (L × W × H, 75 × 75 × 75 cm)
Nylon net//200 mesh
paddy soil///
plastic seed box // (L × W × H, 20 × 15 × 10 cm)
plastic seed pot//10-cm-diameter
plastic tray// (D × H, 28  × 10 cm)
rice seed of FY01 line//60 seeds
rice seed of HZ06 line//30 seeds
rice seed of HZ08 line//30 seeds
rice seed of TN1 variety//many
Rubber band//diameter is 1.5 mm, and the circumference is 32 cm
scotch tape///
SPSS Statistics 19.0IBM Corporation/statistical data analysis
stapler///
transparent PVC //120 cm × 90 cm dimensions and thickness of 0.5 mm

References

  1. Du, B., et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences USA. , (2009).
  2. Khush, G. S.

Explore More Articles

Keyword Extraction White backed PlanthopperWBPHSogatella FurciferaRiceInsect ResistancePreference AssessmentNonpreference type ResistanceFeedingOvipositionBrown PlanthopperBPHNilaparvata LugensScreeningPhenotype Identification

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved