サインイン

Many fundamental cell functions such as muscle contraction and nerve transmission rely on the electrical signals produced by the movement of positively and negatively charged ions across the cell membrane. One competent method to record current flowing across the whole cell or single ion channel is the patch-clamp technique.

In this method, a glass micropipette containing electrolyte solution is tightly sealed against a small portion of the cell membrane. As a result, a patch of the cell membrane is electrically isolated, ensuring that the ions moving across the channels flow only into the micropipette. Further, this tight sealing of the cell membrane prevents ions from escaping into the bath solution in which the cell is suspended.

Different Patch-clamp Methods:

Depending upon the research interest, several variations of the patch-clamp method can be used for measuring the cell's biophysical properties. For example, researchers can clamp or control the membrane voltage and measure the current passing through it. Alternatively, they can clamp the current and measure any variation in the membrane voltage.

In cell-attached mode, the membrane patch containing a single or a few ion channels remains intact. As a result, the current flowing through the membrane patch alone can be measured. In contrast, the whole-cell method involves disruption of the membrane patch by briefly applying strong suction. Consequently, the interior of the pipette becomes continuous with the cytoplasm. This mode enables the measurement of electrical current and voltage from the entire cell.

Another patch-clamp method requires gentle retraction of the attached pipette. As a result, the membrane patch is excised without affecting the tight seal. In this inside-out configuration, the intracellular portion of the membrane is exposed to the bath solution, allowing the study of intracellular factors affecting the channel functions.

タグ
Patch ClampCell MembraneIon ChannelsCurrent MeasurementVoltage MeasurementCell attached ModeWhole cell ModeInside out ConfigurationBiophysical PropertiesElectrophysiology

章から 14:

article

Now Playing

14.11 : Patch Clamp

チャネルと膜の電気的特性

5.2K 閲覧数

article

14.1 : アクアポリン

チャネルと膜の電気的特性

4.6K 閲覧数

article

14.2 : ノンゲートイオンチャネル

チャネルと膜の電気的特性

6.5K 閲覧数

article

14.3 : リガンド依存性イオンチャネル

チャネルと膜の電気的特性

12.0K 閲覧数

article

14.4 : 電位依存性イオンチャネル

チャネルと膜の電気的特性

7.7K 閲覧数

article

14.5 : メカニカルゲートイオンチャネル

チャネルと膜の電気的特性

6.0K 閲覧数

article

14.6 : ニューロンの構造

チャネルと膜の電気的特性

12.1K 閲覧数

article

14.7 : 安静時膜電位

チャネルと膜の電気的特性

16.6K 閲覧数

article

14.8 : 静止電位減衰

チャネルと膜の電気的特性

4.5K 閲覧数

article

14.9 : アクションポテンシャル

チャネルと膜の電気的特性

7.2K 閲覧数

article

14.10 : チャネルロドプシン

チャネルと膜の電気的特性

2.5K 閲覧数

article

14.12 : 電気シナプス

チャネルと膜の電気的特性

7.8K 閲覧数

article

14.13 : 化学シナプス

チャネルと膜の電気的特性

8.3K 閲覧数

article

14.14 : 神経伝達物質の興奮性および抑制性効果

チャネルと膜の電気的特性

9.2K 閲覧数

article

14.15 : 筋肉の収縮

チャネルと膜の電気的特性

5.9K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved