Anmelden

Many fundamental cell functions such as muscle contraction and nerve transmission rely on the electrical signals produced by the movement of positively and negatively charged ions across the cell membrane. One competent method to record current flowing across the whole cell or single ion channel is the patch-clamp technique.

In this method, a glass micropipette containing electrolyte solution is tightly sealed against a small portion of the cell membrane. As a result, a patch of the cell membrane is electrically isolated, ensuring that the ions moving across the channels flow only into the micropipette. Further, this tight sealing of the cell membrane prevents ions from escaping into the bath solution in which the cell is suspended.

Different Patch-clamp Methods:

Depending upon the research interest, several variations of the patch-clamp method can be used for measuring the cell's biophysical properties. For example, researchers can clamp or control the membrane voltage and measure the current passing through it. Alternatively, they can clamp the current and measure any variation in the membrane voltage.

In cell-attached mode, the membrane patch containing a single or a few ion channels remains intact. As a result, the current flowing through the membrane patch alone can be measured. In contrast, the whole-cell method involves disruption of the membrane patch by briefly applying strong suction. Consequently, the interior of the pipette becomes continuous with the cytoplasm. This mode enables the measurement of electrical current and voltage from the entire cell.

Another patch-clamp method requires gentle retraction of the attached pipette. As a result, the membrane patch is excised without affecting the tight seal. In this inside-out configuration, the intracellular portion of the membrane is exposed to the bath solution, allowing the study of intracellular factors affecting the channel functions.

Tags
Patch ClampCell MembraneIon ChannelsCurrent MeasurementVoltage MeasurementCell attached ModeWhole cell ModeInside out ConfigurationBiophysical PropertiesElectrophysiology

Aus Kapitel 14:

article

Now Playing

14.11 : Patch Clamp

Kanäle und die elektrischen Eigenschaften von Membranen

5.2K Ansichten

article

14.1 : Aquaporine

Kanäle und die elektrischen Eigenschaften von Membranen

4.6K Ansichten

article

14.2 : Nicht gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

6.5K Ansichten

article

14.3 : Liganden-gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

12.0K Ansichten

article

14.4 : Spannungsgesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

7.7K Ansichten

article

14.5 : Mechanisch gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

6.0K Ansichten

article

14.6 : Neuronale Struktur

Kanäle und die elektrischen Eigenschaften von Membranen

12.1K Ansichten

article

14.7 : Ruhemembranpotential

Kanäle und die elektrischen Eigenschaften von Membranen

16.6K Ansichten

article

14.8 : Abbau des Ruhepotentials

Kanäle und die elektrischen Eigenschaften von Membranen

4.5K Ansichten

article

14.9 : Aktionspotenzial

Kanäle und die elektrischen Eigenschaften von Membranen

7.2K Ansichten

article

14.10 : Kanal Rhodopsine

Kanäle und die elektrischen Eigenschaften von Membranen

2.5K Ansichten

article

14.12 : Elektrische Synapsen

Kanäle und die elektrischen Eigenschaften von Membranen

7.8K Ansichten

article

14.13 : Chemische Synapsen

Kanäle und die elektrischen Eigenschaften von Membranen

8.3K Ansichten

article

14.14 : Erregende und hemmende Wirkungen von Neurotransmittern

Kanäle und die elektrischen Eigenschaften von Membranen

9.2K Ansichten

article

14.15 : Muskelkontraktion

Kanäle und die elektrischen Eigenschaften von Membranen

5.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten