サインイン

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

タグ
Velocity And Position By Integral Method Velocity Function Position Function Acceleration Function Integral Calculus Kinematic Equations Constant Acceleration Motorboat Example Deceleration Integration Constants

章から 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

直線に沿った動き

5.8K 閲覧数

article

3.1 : 位置と変位

直線に沿った動き

16.9K 閲覧数

article

3.2 : 平均速度

直線に沿った動き

17.8K 閲覧数

article

3.3 : 瞬時速度 - I

直線に沿った動き

12.1K 閲覧数

article

3.4 : 瞬間速度 - II

直線に沿った動き

8.9K 閲覧数

article

3.5 : 平均加速度

直線に沿った動き

9.2K 閲覧数

article

3.6 : 瞬時加速

直線に沿った動き

7.4K 閲覧数

article

3.7 : 運動方程式 - I

直線に沿った動き

10.1K 閲覧数

article

3.8 : 運動方程式 - II

直線に沿った動き

9.1K 閲覧数

article

3.9 : 運動方程式 - III

直線に沿った動き

7.3K 閲覧数

article

3.10 : 運動方程式:問題解決

直線に沿った動き

11.7K 閲覧数

article

3.11 : 自由落下する物体:はじめに

直線に沿った動き

7.7K 閲覧数

article

3.12 : 自由落下するボディ: 例

直線に沿った動き

15.3K 閲覧数

article

3.13 : グラフィカルな方法による速度と位置

直線に沿った動き

7.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved