Anmelden

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tags

Velocity And Position By Integral Method Velocity Function Position Function Acceleration Function Integral Calculus Kinematic Equations Constant Acceleration Motorboat Example Deceleration Integration Constants

Aus Kapitel 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

Motion Along a Straight Line

5.8K Ansichten

article

3.1 : Position und Verschiebung

Motion Along a Straight Line

17.0K Ansichten

article

3.2 : Durchschnittliche Geschwindigkeit

Motion Along a Straight Line

17.8K Ansichten

article

3.3 : Momentane Geschwindigkeit - I

Motion Along a Straight Line

12.1K Ansichten

article

3.4 : Momentane Geschwindigkeit - II

Motion Along a Straight Line

9.0K Ansichten

article

3.5 : Durchschnittliche Beschleunigung

Motion Along a Straight Line

9.3K Ansichten

article

3.6 : Sofortige Beschleunigung

Motion Along a Straight Line

7.4K Ansichten

article

3.7 : Kinematische Gleichungen - I

Motion Along a Straight Line

10.1K Ansichten

article

3.8 : Kinematische Gleichungen - II

Motion Along a Straight Line

9.1K Ansichten

article

3.9 : Kinematische Gleichungen - III

Motion Along a Straight Line

7.3K Ansichten

article

3.10 : Kinematische Gleichungen: Problemlösung

Motion Along a Straight Line

11.7K Ansichten

article

3.11 : Frei fallende Körper: Einführung

Motion Along a Straight Line

7.7K Ansichten

article

3.12 : Frei fallende Körper: Beispiel

Motion Along a Straight Line

15.3K Ansichten

article

3.13 : Geschwindigkeit und Position nach grafischer Methode

Motion Along a Straight Line

7.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten