Accedi

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tags
Velocity And Position By Integral Method Velocity Function Position Function Acceleration Function Integral Calculus Kinematic Equations Constant Acceleration Motorboat Example Deceleration Integration Constants

Dal capitolo 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

Motion Along a Straight Line

5.8K Visualizzazioni

article

3.1 : Posizione e spostamento

Motion Along a Straight Line

16.9K Visualizzazioni

article

3.2 : Velocità media

Motion Along a Straight Line

17.8K Visualizzazioni

article

3.3 : Velocità istantanea - I

Motion Along a Straight Line

12.1K Visualizzazioni

article

3.4 : Velocità istantanea - II

Motion Along a Straight Line

8.9K Visualizzazioni

article

3.5 : Accelerazione media

Motion Along a Straight Line

9.2K Visualizzazioni

article

3.6 : Accelerazione istantanea

Motion Along a Straight Line

7.4K Visualizzazioni

article

3.7 : Equazioni cinematiche - I

Motion Along a Straight Line

10.1K Visualizzazioni

article

3.8 : Equazioni cinematiche - II

Motion Along a Straight Line

9.1K Visualizzazioni

article

3.9 : Equazioni cinematiche - III

Motion Along a Straight Line

7.3K Visualizzazioni

article

3.10 : Equazioni cinematiche: risoluzione dei problemi

Motion Along a Straight Line

11.7K Visualizzazioni

article

3.11 : Corpi in caduta libera: Introduzione

Motion Along a Straight Line

7.7K Visualizzazioni

article

3.12 : Corpi in caduta libera: esempio

Motion Along a Straight Line

15.3K Visualizzazioni

article

3.13 : Velocità e posizione con metodo grafico

Motion Along a Straight Line

7.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati