JoVE Logo

サインイン

DNA replication has three main steps: initiation, elongation, and termination. Replication in prokaryotes begins when initiator proteins bind to the single origin of replication (ori) on the cell's circular chromosome. Replication then proceeds around the entire circle of the chromosome in each direction from the two replication forks, resulting in two DNA molecules.

Many Proteins Work Together to Replicate the Chromosome

Replication is coordinated and carried out by a host of specialized proteins. Topoisomerase breaks one side of the double-stranded DNA phosphate-sugar backbone, allowing the DNA helix to unwind more rapidly, while helicase breaks the bonds between base pairs at the fork, separating the DNA into two template strands. Proteins that bind single-stranded DNA molecules stabilize the strands as the replication fork travels along the chromosome. DNA can only be synthesized in the 5' to 3' direction, so one strand of the template—the leading strand—is elongated continuously, while the other strand—the lagging strand—is synthesized in shorter pieces of 1,000–2,000 base pairs called Okazaki fragments.

Multiple Polymerases Take Part in Elongation

Much of the research to understand prokaryotic DNA replication has been performed in the bacterium Escherichia coli, a commonly-used model organism. E. coli has five DNA polymerases: Pol I, II, III, IV, and V. Pol III is responsible for the majority of DNA replication. It can polymerize about 1,000 base pairs per second. This astonishing pace allows the machinery present at the two replication forks to duplicate the E. coli chromosome—4.6 million base pairs—in roughly 40 minutes. DNA polymerase I is also well-characterized. Its primary role is to process the RNA primers on the lagging strand.

When Division Outpaces Duplication

Under favorable growth conditions, E. coli can divide every 20 minutes, about half the amount of time that it takes to replicate the genome. But how is this possible when both daughter cells must have their own DNA? Scientists found that the bacteria can begin another round of DNA replication from the origin of replication before the first round is complete; this means that daughter cells receive a chromosome that is already in the process of being copied and are prepared to divide again very quickly.

タグ

DNA ReplicationProkaryotesInitiationElongationTerminationReplication ForksEscherichia ColiDNA PolymerasesPol IPol IIPol IIIPol IVPol VLeading StrandLagging StrandOkazaki FragmentsTopoisomeraseHelicase

章から 8:

article

Now Playing

8.6 : Replication in Prokaryotes

DNA複製 そして 修復

23.7K 閲覧数

article

8.1 : 塩基対形成とDNA修復

DNA複製 そして 修復

64.4K 閲覧数

article

8.2 : DNA複製フォーク

DNA複製 そして 修復

14.4K 閲覧数

article

8.3 : ラギングストランド合成

DNA複製 そして 修復

12.7K 閲覧数

article

8.4 : レプリソーム

DNA複製 そして 修復

6.0K 閲覧数

article

8.5 : 校正

DNA複製 そして 修復

6.0K 閲覧数

article

8.7 : 真核生物でのレプリケーション

DNA複製 そして 修復

12.7K 閲覧数

article

8.8 : テロメアとテロメラーゼ

DNA複製 そして 修復

5.0K 閲覧数

article

8.9 : DNA修復の概要

DNA複製 そして 修復

7.4K 閲覧数

article

8.10 : ベースエクスキシジョンリペア

DNA複製 そして 修復

3.5K 閲覧数

article

8.11 : ヌクレオチド除去修復

DNA複製 そして 修復

3.4K 閲覧数

article

8.12 : ミスマッチ修復

DNA複製 そして 修復

4.6K 閲覧数

article

8.13 : 2本鎖断線の修正

DNA複製 そして 修復

3.0K 閲覧数

article

8.14 : 相同組換え

DNA複製 そして 修復

4.3K 閲覧数

article

8.15 : 遺伝子変換

DNA複製 そして 修復

2.2K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved