Войдите в систему

DNA replication has three main steps: initiation, elongation, and termination. Replication in prokaryotes begins when initiator proteins bind to the single origin of replication (ori) on the cell's circular chromosome. Replication then proceeds around the entire circle of the chromosome in each direction from the two replication forks, resulting in two DNA molecules.

Many Proteins Work Together to Replicate the Chromosome

Replication is coordinated and carried out by a host of specialized proteins. Topoisomerase breaks one side of the double-stranded DNA phosphate-sugar backbone, allowing the DNA helix to unwind more rapidly, while helicase breaks the bonds between base pairs at the fork, separating the DNA into two template strands. Proteins that bind single-stranded DNA molecules stabilize the strands as the replication fork travels along the chromosome. DNA can only be synthesized in the 5' to 3' direction, so one strand of the template—the leading strand—is elongated continuously, while the other strand—the lagging strand—is synthesized in shorter pieces of 1,000–2,000 base pairs called Okazaki fragments.

Multiple Polymerases Take Part in Elongation

Much of the research to understand prokaryotic DNA replication has been performed in the bacterium Escherichia coli, a commonly-used model organism. E. coli has five DNA polymerases: Pol I, II, III, IV, and V. Pol III is responsible for the majority of DNA replication. It can polymerize about 1,000 base pairs per second. This astonishing pace allows the machinery present at the two replication forks to duplicate the E. coli chromosome—4.6 million base pairs—in roughly 40 minutes. DNA polymerase I is also well-characterized. Its primary role is to process the RNA primers on the lagging strand.

When Division Outpaces Duplication

Under favorable growth conditions, E. coli can divide every 20 minutes, about half the amount of time that it takes to replicate the genome. But how is this possible when both daughter cells must have their own DNA? Scientists found that the bacteria can begin another round of DNA replication from the origin of replication before the first round is complete; this means that daughter cells receive a chromosome that is already in the process of being copied and are prepared to divide again very quickly.

Теги
DNA ReplicationProkaryotesInitiationElongationTerminationReplication ForksEscherichia ColiDNA PolymerasesPol IPol IIPol IIIPol IVPol VLeading StrandLagging StrandOkazaki FragmentsTopoisomeraseHelicase

Из главы 8:

article

Now Playing

8.6 : Replication in Prokaryotes

DNA Replication and Repair

22.5K Просмотры

article

8.1 : Спаривание оснований и репарация ДНК

DNA Replication and Repair

64.3K Просмотры

article

8.2 : Вилка репликации ДНК

DNA Replication and Repair

13.2K Просмотры

article

8.3 : Синтез запаздывающих цепей

DNA Replication and Repair

11.6K Просмотры

article

8.4 : Ответ

DNA Replication and Repair

5.9K Просмотры

article

8.5 : Корректура

DNA Replication and Repair

5.8K Просмотры

article

8.7 : Репликация у эукариот

DNA Replication and Repair

11.7K Просмотры

article

8.8 : Теломеры и теломеразы

DNA Replication and Repair

4.8K Просмотры

article

8.9 : Обзор репарации ДНК

DNA Replication and Repair

7.3K Просмотры

article

8.10 : Ремонт основания

DNA Replication and Repair

3.5K Просмотры

article

8.11 : Эксцизионная репарация нуклеотидов

DNA Replication and Repair

3.3K Просмотры

article

8.12 : Устранение несоответствий

DNA Replication and Repair

4.6K Просмотры

article

8.13 : Фиксация двухцепочечных разрывов

DNA Replication and Repair

3.0K Просмотры

article

8.14 : Гомологичная рекомбинация

DNA Replication and Repair

4.3K Просмотры

article

8.15 : Конверсия генов

DNA Replication and Repair

2.2K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены