Entrar

DNA replication has three main steps: initiation, elongation, and termination. Replication in prokaryotes begins when initiator proteins bind to the single origin of replication (ori) on the cell's circular chromosome. Replication then proceeds around the entire circle of the chromosome in each direction from the two replication forks, resulting in two DNA molecules.

Many Proteins Work Together to Replicate the Chromosome

Replication is coordinated and carried out by a host of specialized proteins. Topoisomerase breaks one side of the double-stranded DNA phosphate-sugar backbone, allowing the DNA helix to unwind more rapidly, while helicase breaks the bonds between base pairs at the fork, separating the DNA into two template strands. Proteins that bind single-stranded DNA molecules stabilize the strands as the replication fork travels along the chromosome. DNA can only be synthesized in the 5' to 3' direction, so one strand of the template—the leading strand—is elongated continuously, while the other strand—the lagging strand—is synthesized in shorter pieces of 1,000–2,000 base pairs called Okazaki fragments.

Multiple Polymerases Take Part in Elongation

Much of the research to understand prokaryotic DNA replication has been performed in the bacterium Escherichia coli, a commonly-used model organism. E. coli has five DNA polymerases: Pol I, II, III, IV, and V. Pol III is responsible for the majority of DNA replication. It can polymerize about 1,000 base pairs per second. This astonishing pace allows the machinery present at the two replication forks to duplicate the E. coli chromosome—4.6 million base pairs—in roughly 40 minutes. DNA polymerase I is also well-characterized. Its primary role is to process the RNA primers on the lagging strand.

When Division Outpaces Duplication

Under favorable growth conditions, E. coli can divide every 20 minutes, about half the amount of time that it takes to replicate the genome. But how is this possible when both daughter cells must have their own DNA? Scientists found that the bacteria can begin another round of DNA replication from the origin of replication before the first round is complete; this means that daughter cells receive a chromosome that is already in the process of being copied and are prepared to divide again very quickly.

Tags
DNA ReplicationProkaryotesInitiationElongationTerminationReplication ForksEscherichia ColiDNA PolymerasesPol IPol IIPol IIIPol IVPol VLeading StrandLagging StrandOkazaki FragmentsTopoisomeraseHelicase

Do Capítulo 8:

article

Now Playing

8.6 : Replicação em Procariontes

Replicação e Reparo do DNA

22.6K Visualizações

article

8.1 : Pareamento de Bases e Reparo do DNA

Replicação e Reparo do DNA

64.3K Visualizações

article

8.2 : A forquilha de replicação do DNA

Replicação e Reparo do DNA

13.3K Visualizações

article

8.3 : Síntese da Fita Atrasada

Replicação e Reparo do DNA

11.7K Visualizações

article

8.4 : O Replissoma

Replicação e Reparo do DNA

5.9K Visualizações

article

8.5 : Verificação

Replicação e Reparo do DNA

5.8K Visualizações

article

8.7 : Replicação em Eucariontes

Replicação e Reparo do DNA

11.7K Visualizações

article

8.8 : Telômeros e Telomerase

Replicação e Reparo do DNA

4.9K Visualizações

article

8.9 : Visão Geral do Reparo de DNA

Replicação e Reparo do DNA

7.3K Visualizações

article

8.10 : Reparo por Excisão de Base

Replicação e Reparo do DNA

3.5K Visualizações

article

8.11 : Reparo por Excisão de Nucleotídeo

Replicação e Reparo do DNA

3.3K Visualizações

article

8.12 : Reparo de Pareamento Errado

Replicação e Reparo do DNA

4.6K Visualizações

article

8.13 : Reparando Quebras de Fita dupla

Replicação e Reparo do DNA

3.0K Visualizações

article

8.14 : Recombinação Homóloga

Replicação e Reparo do DNA

4.3K Visualizações

article

8.15 : Conversão de Gene

Replicação e Reparo do DNA

2.2K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados