サインイン

The range is one of the measures of variation. It can be defined as the difference between a dataset's highest and lowest values. For example, in the study of seven 16-ounce soda cans, the filled volume of soda was measured, thus producing the following amount (in ounces) of soda:

15.9; 16.1; 15.2; 14.8; 15.8; 15.9; 16.0; 15.5

Measurements of the amount of soda in a 16-ounce can vary since different subjects record these measurements or since the exact amount - 16 ounces of liquid, was not poured into the containers. Manufacturers regularly perform tests to determine if the amount of soda in the can falls within the desired range. For the given dataset, the range is calculated as the difference between the largest and smallest values: 16.1 − 14.8 = 1.3.

The range relies heavily on the extreme values, that is, the maximum and minimum values. Hence, it is highly susceptible to outliers and lacks robustness in measurement. However, it is relatively easy to compute; therefore, it is used widely in statistical process control in manufacturing, as shown in the above example.

タグ
RangeVariationDatasetHighest ValueLowest ValueMeasurementOutliersStatistical Process ControlManufacturingSoda Can MeasurementsRobustnessMaximum ValueMinimum Value

章から 4:

article

Now Playing

4.2 : Range

変動の尺度

10.8K 閲覧数

article

4.1 : バリエーションとは?

変動の尺度

10.9K 閲覧数

article

4.3 : 標準偏差

変動の尺度

15.4K 閲覧数

article

4.4 : 平均の標準誤差

変動の尺度

5.4K 閲覧数

article

4.5 : 標準偏差の計算

変動の尺度

7.0K 閲覧数

article

4.6 : 分散

変動の尺度

9.1K 閲覧数

article

4.7 : 変動係数

変動の尺度

3.5K 閲覧数

article

4.8 : 標準偏差を解釈するための範囲の経験則

変動の尺度

8.7K 閲覧数

article

4.9 : 標準偏差を解釈するための経験的方法

変動の尺度

5.0K 閲覧数

article

4.10 : 標準偏差を解釈するチェビシェフの定理

変動の尺度

4.0K 閲覧数

article

4.11 : 平均絶対偏差

変動の尺度

2.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved