JoVE Logo

S'identifier

4.2 : Range

The range is one of the measures of variation. It can be defined as the difference between a dataset's highest and lowest values. For example, in the study of seven 16-ounce soda cans, the filled volume of soda was measured, thus producing the following amount (in ounces) of soda:

15.9; 16.1; 15.2; 14.8; 15.8; 15.9; 16.0; 15.5

Measurements of the amount of soda in a 16-ounce can vary since different subjects record these measurements or since the exact amount - 16 ounces of liquid, was not poured into the containers. Manufacturers regularly perform tests to determine if the amount of soda in the can falls within the desired range. For the given dataset, the range is calculated as the difference between the largest and smallest values: 16.1 − 14.8 = 1.3.

The range relies heavily on the extreme values, that is, the maximum and minimum values. Hence, it is highly susceptible to outliers and lacks robustness in measurement. However, it is relatively easy to compute; therefore, it is used widely in statistical process control in manufacturing, as shown in the above example.

Tags

RangeVariationDatasetHighest ValueLowest ValueMeasurementOutliersStatistical Process ControlManufacturingSoda Can MeasurementsRobustnessMaximum ValueMinimum Value

Du chapitre 4:

article

Now Playing

4.2 : Range

Measures of Variation

11.0K Vues

article

4.1 : Qu’est-ce que la variation ?

Measures of Variation

11.2K Vues

article

4.3 : Écart type

Measures of Variation

15.8K Vues

article

4.4 : Erreur type de la moyenne

Measures of Variation

5.6K Vues

article

4.5 : Calcul de l’écart-type

Measures of Variation

7.3K Vues

article

4.6 : Variance

Measures of Variation

9.3K Vues

article

4.7 : Coefficient de variation

Measures of Variation

3.7K Vues

article

4.8 : Règle empirique de l’intervalle pour interpréter l’écart-type

Measures of Variation

8.9K Vues

article

4.9 : Méthode empirique d’interprétation de l’écart-type

Measures of Variation

5.1K Vues

article

4.10 : Théorème de Tchebychev pour interpréter l’écart-type

Measures of Variation

4.1K Vues

article

4.11 : Écart absolu moyen

Measures of Variation

2.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.