サインイン

Ampere's law states that for any closed looped path, the line integral of the magnetic field along the path equals the vacuum permeability times the current enclosed in the loop. If the fingers of the right hand curl along the direction of the integration path, the current in the direction of the thumb is considered positive. The current opposite to the thumb direction is considered negative.

Specific steps need to be considered while calculating the symmetric magnetic field distribution using Ampere's Law.

  1. The symmetry of the current is identified. For a non-symmetric current distribution, the magnetic field can be calculated using Biot Savart's Law instead of Ampere's Law.
  2. A symmetric integration path is chosen where the magnetic field is either constant or zero. Ideally, this Amperian path should be tangential or perpendicular to the magnetic field along the path.
  3. When a constant magnetic field is tangent to all or some portion of the Amperian path, the line integral of the magnetic field reduces to the product of the constant magnetic field times the length of the loop for that portion. The line integral is zero for regions where the magnetic field is perpendicular to the path, or its magnitude is zero.
  4. The current enclosed by the integration path is calculated by summing up the individual currents passing through the path. The right-hand rule gives the direction of the current. If the curl of the fingers follows the direction of the path integration, then the thumb points in the direction of the positive current.
  5. If the magnetic field is tangential to the path and the current enclosed is positive, then the magnetic field's direction follows the integration direction. If the enclosed current is negative, the direction of the magnetic field is opposite to the direction of integration.
  6. Finally, the line integral of the magnetic field is equated with the current enclosed to get the magnetic field.
タグ
Ampere s LawMagnetic FieldLine IntegralVacuum PermeabilityCurrent EnclosedRight hand RuleSymmetric Magnetic Field DistributionBiot Savart LawAmperian PathConstant Magnetic FieldIntegration PathPositive CurrentNegative Current

章から 29:

article

Now Playing

29.10 : Ampere's Law: Problem-Solving

磁場の発生源

3.4K 閲覧数

article

29.1 : 移動電荷による磁場

磁場の発生源

8.0K 閲覧数

article

29.2 : ビオ・サバール法

磁場の発生源

5.5K 閲覧数

article

29.3 : ビオ・サバールの法則:問題解決

磁場の発生源

2.2K 閲覧数

article

29.4 : 細い直線ワイヤーによる磁場

磁場の発生源

4.5K 閲覧数

article

29.5 : 2本の直線ワイヤによる磁場

磁場の発生源

2.2K 閲覧数

article

29.6 : 2つの並列電流間の磁力

磁場の発生源

3.3K 閲覧数

article

29.7 : 電流ループの磁場

磁場の発生源

4.1K 閲覧数

article

29.8 : 磁場の発散とカール

磁場の発生源

2.6K 閲覧数

article

29.9 : アンペアの法則

磁場の発生源

3.5K 閲覧数

article

29.11 : ソレノイド

磁場の発生源

2.4K 閲覧数

article

29.12 : ソレノイドの磁場

磁場の発生源

3.5K 閲覧数

article

29.13 : トロイド

磁場の発生源

2.7K 閲覧数

article

29.14 : 磁気ベクトルポテンシャル

磁場の発生源

445 閲覧数

article

29.15 : 磁化された物体による電位

磁場の発生源

227 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved