Войдите в систему

Ampere's law states that for any closed looped path, the line integral of the magnetic field along the path equals the vacuum permeability times the current enclosed in the loop. If the fingers of the right hand curl along the direction of the integration path, the current in the direction of the thumb is considered positive. The current opposite to the thumb direction is considered negative.

Specific steps need to be considered while calculating the symmetric magnetic field distribution using Ampere's Law.

  1. The symmetry of the current is identified. For a non-symmetric current distribution, the magnetic field can be calculated using Biot Savart's Law instead of Ampere's Law.
  2. A symmetric integration path is chosen where the magnetic field is either constant or zero. Ideally, this Amperian path should be tangential or perpendicular to the magnetic field along the path.
  3. When a constant magnetic field is tangent to all or some portion of the Amperian path, the line integral of the magnetic field reduces to the product of the constant magnetic field times the length of the loop for that portion. The line integral is zero for regions where the magnetic field is perpendicular to the path, or its magnitude is zero.
  4. The current enclosed by the integration path is calculated by summing up the individual currents passing through the path. The right-hand rule gives the direction of the current. If the curl of the fingers follows the direction of the path integration, then the thumb points in the direction of the positive current.
  5. If the magnetic field is tangential to the path and the current enclosed is positive, then the magnetic field's direction follows the integration direction. If the enclosed current is negative, the direction of the magnetic field is opposite to the direction of integration.
  6. Finally, the line integral of the magnetic field is equated with the current enclosed to get the magnetic field.
Теги
Ampere s LawMagnetic FieldLine IntegralVacuum PermeabilityCurrent EnclosedRight hand RuleSymmetric Magnetic Field DistributionBiot Savart LawAmperian PathConstant Magnetic FieldIntegration PathPositive CurrentNegative Current

Из главы 29:

article

Now Playing

29.10 : Ampere's Law: Problem-Solving

Sources of Magnetic Fields

3.4K Просмотры

article

29.1 : Магнитное поле из-за движущихся зарядов

Sources of Magnetic Fields

8.0K Просмотры

article

29.2 : Закон Био-Савара

Sources of Magnetic Fields

5.5K Просмотры

article

29.3 : Закон Био-Савара: решение проблем

Sources of Magnetic Fields

2.2K Просмотры

article

29.4 : Магнитное поле благодаря тонкому прямому проводу

Sources of Magnetic Fields

4.5K Просмотры

article

29.5 : Магнитное поле благодаря двум прямым проводам

Sources of Magnetic Fields

2.2K Просмотры

article

29.6 : Магнитная сила между двумя параллельными токами

Sources of Magnetic Fields

3.3K Просмотры

article

29.7 : Магнитное поле токовой петли

Sources of Magnetic Fields

4.1K Просмотры

article

29.8 : Дивергенция и закручивание магнитного поля

Sources of Magnetic Fields

2.6K Просмотры

article

29.9 : Закон Ампера

Sources of Magnetic Fields

3.5K Просмотры

article

29.11 : Соленоиды

Sources of Magnetic Fields

2.4K Просмотры

article

29.12 : Магнитное поле соленоида

Sources of Magnetic Fields

3.5K Просмотры

article

29.13 : Тороиды

Sources of Magnetic Fields

2.7K Просмотры

article

29.14 : Магнитный векторный потенциал

Sources of Magnetic Fields

442 Просмотры

article

29.15 : Потенциал из-за намагниченного объекта

Sources of Magnetic Fields

225 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены