Entrar

Ampere's law states that for any closed looped path, the line integral of the magnetic field along the path equals the vacuum permeability times the current enclosed in the loop. If the fingers of the right hand curl along the direction of the integration path, the current in the direction of the thumb is considered positive. The current opposite to the thumb direction is considered negative.

Specific steps need to be considered while calculating the symmetric magnetic field distribution using Ampere's Law.

  1. The symmetry of the current is identified. For a non-symmetric current distribution, the magnetic field can be calculated using Biot Savart's Law instead of Ampere's Law.
  2. A symmetric integration path is chosen where the magnetic field is either constant or zero. Ideally, this Amperian path should be tangential or perpendicular to the magnetic field along the path.
  3. When a constant magnetic field is tangent to all or some portion of the Amperian path, the line integral of the magnetic field reduces to the product of the constant magnetic field times the length of the loop for that portion. The line integral is zero for regions where the magnetic field is perpendicular to the path, or its magnitude is zero.
  4. The current enclosed by the integration path is calculated by summing up the individual currents passing through the path. The right-hand rule gives the direction of the current. If the curl of the fingers follows the direction of the path integration, then the thumb points in the direction of the positive current.
  5. If the magnetic field is tangential to the path and the current enclosed is positive, then the magnetic field's direction follows the integration direction. If the enclosed current is negative, the direction of the magnetic field is opposite to the direction of integration.
  6. Finally, the line integral of the magnetic field is equated with the current enclosed to get the magnetic field.
Tags
Ampere s LawMagnetic FieldLine IntegralVacuum PermeabilityCurrent EnclosedRight hand RuleSymmetric Magnetic Field DistributionBiot Savart LawAmperian PathConstant Magnetic FieldIntegration PathPositive CurrentNegative Current

Do Capítulo 29:

article

Now Playing

29.10 : Lei de Ampère: Resolução de Problemas

Fontes de Campos Magnéticos

3.4K Visualizações

article

29.1 : Campo Magnético Gerado por Cargas em Movimento

Fontes de Campos Magnéticos

8.0K Visualizações

article

29.2 : Lei de Biot-Savart

Fontes de Campos Magnéticos

5.5K Visualizações

article

29.3 : Lei de Biot-Savart: Resolução de Problemas

Fontes de Campos Magnéticos

2.2K Visualizações

article

29.4 : Campo Magnético Gerado por um Fio Retilíneo Fino

Fontes de Campos Magnéticos

4.5K Visualizações

article

29.5 : Campo Magnético Devido a Dois Fios Retos

Fontes de Campos Magnéticos

2.2K Visualizações

article

29.6 : Força Magnética Entre Duas Correntes Paralelas

Fontes de Campos Magnéticos

3.3K Visualizações

article

29.7 : Campo Magnético em uma Espira de Corrente

Fontes de Campos Magnéticos

4.1K Visualizações

article

29.8 : Divergência e Rotacional do Campo Magnético

Fontes de Campos Magnéticos

2.6K Visualizações

article

29.9 : Lei de Ampère

Fontes de Campos Magnéticos

3.5K Visualizações

article

29.11 : Solenóides

Fontes de Campos Magnéticos

2.4K Visualizações

article

29.12 : Campo Magnético de um Solenóide

Fontes de Campos Magnéticos

3.5K Visualizações

article

29.13 : Toróides

Fontes de Campos Magnéticos

2.7K Visualizações

article

29.14 : Potencial Vetorial Magnético

Fontes de Campos Magnéticos

445 Visualizações

article

29.15 : Potencial Devido a um Objeto Magnetizado

Fontes de Campos Magnéticos

227 Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados