Quite often in three-dimensional statics problems, the direction of a force is specified by two points through which its line of action passes. Consider a three-dimensional static pole with a cable anchored to the ground.

Equation 1

Considering a Cartesian coordinate system with the origin at the pole base, the endpoints of the cable can be denoted as A and B. PA and PB represent the position vectors for the two ends of the cable. The triangle law of vector addition is used to obtain the position vector along points A and B. For this purpose, the position vector PA is subtracted from PB.

Equation 1

The magnitude of the position vector can be obtained from the square root of the sum of the squares of its components.

Equation 2

The tension force acting on the cable is directed from point A toward point B following the same direction as the position vector PAB. The unit vector along the cable specifies the direction of the force. It is evaluated by dividing the position vector by its magnitude.

Equation 3

Lastly, the force vector can be expressed in the Cartesian form by multiplying the magnitude of the force vector and the unit vector. This product yields a three-dimensional vector representing the force acting on the pole.

Equation 4

タグ
Force VectorThree dimensional StaticsLine Of ActionPosition VectorsTriangle Law Of Vector AdditionTension ForceUnit VectorCartesian Coordinate SystemMagnitude Of Force VectorCable Tension

章から 2:

article

Now Playing

2.14 : Force Vector along a Line

力のベクトル

389 閲覧数

article

2.1 : スカラーとベクトル

力のベクトル

1.1K 閲覧数

article

2.2 : ベクトル演算

力のベクトル

1.0K 閲覧数

article

2.3 : 力の紹介

力のベクトル

378 閲覧数

article

2.4 : 力の分類

力のベクトル

975 閲覧数

article

2.5 : 力のベクトル加算

力のベクトル

487 閲覧数

article

2.6 : 2次元力システム

力のベクトル

768 閲覧数

article

2.7 : 2次元力システム:問題解決

力のベクトル

462 閲覧数

article

2.8 : スカラー表記

力のベクトル

580 閲覧数

article

2.9 : デカルトベクトル表記

力のベクトル

579 閲覧数

article

2.10 : ベクトルの方向余弦

力のベクトル

318 閲覧数

article

2.11 : 3次元力システム

力のベクトル

1.8K 閲覧数

article

2.12 : 3次元力システム:問題解決

力のベクトル

516 閲覧数

article

2.13 : 位置ベクトル

力のベクトル

629 閲覧数

article

2.15 : ドット積

力のベクトル

227 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved