Quite often in three-dimensional statics problems, the direction of a force is specified by two points through which its line of action passes. Consider a three-dimensional static pole with a cable anchored to the ground.

Equation 1

Considering a Cartesian coordinate system with the origin at the pole base, the endpoints of the cable can be denoted as A and B. PA and PB represent the position vectors for the two ends of the cable. The triangle law of vector addition is used to obtain the position vector along points A and B. For this purpose, the position vector PA is subtracted from PB.

Equation 1

The magnitude of the position vector can be obtained from the square root of the sum of the squares of its components.

Equation 2

The tension force acting on the cable is directed from point A toward point B following the same direction as the position vector PAB. The unit vector along the cable specifies the direction of the force. It is evaluated by dividing the position vector by its magnitude.

Equation 3

Lastly, the force vector can be expressed in the Cartesian form by multiplying the magnitude of the force vector and the unit vector. This product yields a three-dimensional vector representing the force acting on the pole.

Equation 4

Теги
Force VectorThree dimensional StaticsLine Of ActionPosition VectorsTriangle Law Of Vector AdditionTension ForceUnit VectorCartesian Coordinate SystemMagnitude Of Force VectorCable Tension

Из главы 2:

article

Now Playing

2.14 : Force Vector along a Line

Force Vectors

390 Просмотры

article

2.1 : Скаляры и векторы

Force Vectors

1.1K Просмотры

article

2.2 : Векторные операции

Force Vectors

1.0K Просмотры

article

2.3 : Введение в силу

Force Vectors

380 Просмотры

article

2.4 : Классификация силы

Force Vectors

976 Просмотры

article

2.5 : Векторное сложение сил

Force Vectors

489 Просмотры

article

2.6 : Двумерная силовая система

Force Vectors

769 Просмотры

article

2.7 : Двумерная силовая система: решение проблем

Force Vectors

467 Просмотры

article

2.8 : Скалярная нотация

Force Vectors

582 Просмотры

article

2.9 : Декартова векторная нотация

Force Vectors

585 Просмотры

article

2.10 : Направление косинусов вектора

Force Vectors

322 Просмотры

article

2.11 : Трехмерная силовая система

Force Vectors

1.8K Просмотры

article

2.12 : Трехмерная силовая система: решение проблем

Force Vectors

519 Просмотры

article

2.13 : Векторы положения

Force Vectors

630 Просмотры

article

2.15 : Скалярное произведение

Force Vectors

230 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены