S'identifier

Quite often in three-dimensional statics problems, the direction of a force is specified by two points through which its line of action passes. Consider a three-dimensional static pole with a cable anchored to the ground.

Equation 1

Considering a Cartesian coordinate system with the origin at the pole base, the endpoints of the cable can be denoted as A and B. PA and PB represent the position vectors for the two ends of the cable. The triangle law of vector addition is used to obtain the position vector along points A and B. For this purpose, the position vector PA is subtracted from PB.

Equation 1

The magnitude of the position vector can be obtained from the square root of the sum of the squares of its components.

Equation 2

The tension force acting on the cable is directed from point A toward point B following the same direction as the position vector PAB. The unit vector along the cable specifies the direction of the force. It is evaluated by dividing the position vector by its magnitude.

Equation 3

Lastly, the force vector can be expressed in the Cartesian form by multiplying the magnitude of the force vector and the unit vector. This product yields a three-dimensional vector representing the force acting on the pole.

Equation 4

Tags
Force VectorThree dimensional StaticsLine Of ActionPosition VectorsTriangle Law Of Vector AdditionTension ForceUnit VectorCartesian Coordinate SystemMagnitude Of Force VectorCable Tension

Du chapitre 2:

article

Now Playing

2.14 : Force Vector along a Line

Force Vectors

423 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

422 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

537 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

802 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

493 Vues

article

2.8 : Notation scalaire

Force Vectors

601 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

652 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

370 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.8K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

564 Vues

article

2.13 : Vecteurs de position

Force Vectors

669 Vues

article

2.15 : Produit scalaire

Force Vectors

248 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.