このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
This work details procedures for rapid identification of bacteria using MALDI-TOF MS. The identification procedures include spectrum acquisition, database construction, and follow up analyses. Two identification methods, similarity coefficient-based and biomarker-based methods, are presented.
MALDI-TOF mass spectrometry has been shown to be a rapid and reliable tool for identification of bacteria at the genus and species, and in some cases, strain levels. Commercially available and open source software tools have been developed to facilitate identification; however, no universal/standardized data analysis pipeline has been described in the literature. Here, we provide a comprehensive and detailed demonstration of bacterial identification procedures using a MALDI-TOF mass spectrometer. Mass spectra were collected from 15 diverse bacteria isolated from Kartchner Caverns, AZ, USA, and identified by 16S rDNA sequencing. Databases were constructed in BioNumerics 7.1. Follow-up analyses of mass spectra were performed, including cluster analyses, peak matching, and statistical analyses. Identification was performed using blind-coded samples randomly selected from these 15 bacteria. Two identification methods are presented: similarity coefficient-based and biomarker-based methods. Results show that both identification methods can identify the bacteria to the species level.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been shown to be a rapid and reliable tool for identification of bacteria at the genus, species, and in some cases, strain levels1-4. MALDI-TOF MS ionizes biological molecules (typically proteins) that originate from cell surfaces, intracellular membranes, and ribosomes from bacterial whole cells or protein extracts1,5. The resulting peaks form characteristic patterns or “fingerprints” of the bacteria analyzed1. Identification of bacteria is based on these mass-to-charge “fingerprints”.
Two of the most commonly used identification strategies are library-based and bioinformatics-based strategies1. Library-based approaches involve comparing the mass spectra of unknowns to previously collected mass spectra of known bacteria in databases/libraries for identification. Commercially available software, such as BioNumerics, Biotyper, and SARAMIS software packages, as well as open source software tools, such as SpectraBank6, are available to facilitate the comparison and quantification of similarity between mass spectra of unknowns and reference bacteria. Bioinformatics-based approaches usually rely on fully sequenced genomes of bacteria for identification. In contrast to library-based approaches which do not involve identification of the biological nature of particular peaks, bioinformatics-based approaches involve protein identification1.
The majority of recent MALDI fingerprint-based studies have used library-based approaches to identify bacteria1. Library-based approaches require construction of databases and comparison of the similarity between mass spectra. Studies show that many experimental procedures, such as medium3,7, cultivation time8, sample preparation method3, and matrix used9, affect the mass spectra obtained. Furthermore, some closely-related species and strains generate spectra with only subtle differences. Thus, library-based approaches require rigorously standardized procedures to generate highly reproducible mass spectra between replicates. Minor variations in protocols may compromise the efficacy of identification, especially at the subspecies and strain levels1,3,10. However, neither manufacturer-provided reference databases nor reported custom databases include visually documented procedures for database construction and/or application of a data analysis pipeline. For this reason, the objective of this work was to develop, apply, and demonstrate a comprehensive and detailed procedure for library-based bacterial identification using MALDI-TOF MS.
In this demonstration, mass spectra of 15 bacteria isolated from a karstic environment (Kartchner Cavern, AZ, USA) were collected and imported into software to construct a model database. Data processing and the analysis pipeline were detailed using the model database. Finally, mass spectra of blind-coded bacteria which were randomly selected from these 15 bacteria were collected again and compared to the reference spectra in the model database for identification. Results show that bacteria can be correctly identified either based on similarity coefficients or potential biomarkers/peak classes.
Access restricted. Please log in or start a trial to view this content.
注意 :どのような環境からの未確認細菌は病原性とすることができ、適切なバイオセーフティプロトコルを使用して、慎重に処理する必要があります。ライブ文化との仕事は生物学的安全レベル2(BSL-2)の手順を使用して、クラスII安全キャビネットで実行する必要があります。 BSL-2手続きの詳細については、CDC / NIHのタイトルのマニュアル、「微生物学的および生物医学研究所でバイオセーフティ、「ページ33-38で利用可能です。ドキュメントは、オンラインで利用可能ですhttp://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf 。白衣/ガウン、安全眼鏡、及びニトリルまたはラテックス手袋など適切な個人用保護具(PPE)は、着用しなければならない。標準微生物学的慣行や注意事項に従わなければならず、バイオハザード廃棄物は適切に廃棄しなければならない。
このデモで使用される細菌は、カーチェナー洞窟から単離した、AZ、USA、ドライ鍾乳石、フロー石、湿った鍾乳石や鍾乳石のドリップ( 表1)を含む4つの環境から。すべての分離株は、16S rDNAの塩基配列決定によって同定され、25%グリセロール、R 2 B培地中で-80℃で保存した。すべての実験は、室温で完了した。
注:私たちは、データベース構築と未知数の質量スペクトルのための質量スペクトルを取得するために、同じサンプル調製方法を使用することをお勧めします。試料調製法は、スペクトルの品質および再現3に影響することが以前に示されている。異なる試料調製方法を使用すると、(株レベルで、例えば 、)より高い分類学的解像度が所望される場合は特に、未知数の誤った識別を引き起こし得る。
MALDIターゲット1.沈着
注意 :タンパク質抽出物を得るためのいくつかのプロトコルは、酸とのguidに従って利用されなければならない有機溶媒の使用を必要とするそれぞれの材料安全データシート(MSDS)に含まれるelines情報。適切なPPEは、アセトニトリルなどの毒性、引火性溶剤、かなりの量で作業するときに使用する必要があります着用しなければならないと種類とボリューム使用される化学物質の( 例えば 、白衣/ガウン、手袋、安全眼鏡、および呼吸器保護により変動するため、ギ酸およびトリフルオロ酢酸などの腐食性の酸、)。
2.マススペクトルの取得
3.データベース構築
4.マススペクトルデータ解析
カスタムデータベース5.細菌同定
Access restricted. Please log in or start a trial to view this content.
このデモで構築したデータベースは、「すべてのレベル」、「種」、それぞれ「生物学的複製」と「技術複製」、( 図1A)を含む、最高に最低レベルから、4つのレベルを持っていた。 「技術の複製」レベルは技術的反復のすべての前処理されたスペクトルを含んでいた。 「生物学的複製」と「種」レベルはコンポジット(サマリー)スペクトルを含んでいた。 「すべてのレベ?...
Access restricted. Please log in or start a trial to view this content.
このデモでは、特性評価およびMALDI-TOF MSおよびカスタム·データベースを使用して、細菌の同定の詳細な手順を示した。例えば、伝統的な分子的方法、16S rDNAの塩基配列決定と比較して、MALDI-TOF MSベースのフィンガープリント法は、多様な細菌のより迅速な識別を容易にする。 、そのロバスト性のため、この技術は、広く環境から臨床現場1,14-16細菌、ウイルス、真菌および酵母を特?...
Access restricted. Please log in or start a trial to view this content.
Authors Vranckx and Janssens are employees of Applied Maths NV, the manufacturer of data analysis software used in this video. Applied Maths NV provided select software modules highlighted in this video as well as a portion of the publication costs associated with this video.
This work was supported by the New College of Interdisciplinary Arts and Sciences at Arizona State University, Applied Maths NV, and by the National Science Foundation (ROA Supplement to Award No. MCB0604300). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
α-cyano-4-hydroxy-cinnamic acid | ACROS Organics | 163440050 | ≥ 97%, CAS 28168-41-8 |
Bruker FlexControl software | Bruker Daltonics | version 3.0 | |
Bruker FlexAnalysis software | Bruker Daltonics | version 3.0 | |
Bionumerics software | Applied Maths | version 7.1 |
Access restricted. Please log in or start a trial to view this content.
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved