Method Article
The objective of the study was to assess the biological impact of 15 cigarette smoke constituents using a combination of an impedance-based real time cell analyzer and a high-content screening (HCS)-based platform for toxicological assessment in vitro. This study provides information on effective doses, toxicity and modes of action of the tested compounds.
タバコの煙(CS)は、心血管および肺疾患の主要な危険因子です。 CSは、その全体的な毒性への個々の成分の寄与を評価するために挑戦されている7,000以上の化学物質1を含む複雑なエアロゾルであるので。米国食品医薬品局によって定義されるような個々の成分並びに混合物の有害性プロファイルがしかし、スループットのタバコの煙の有害と潜在的に有害な成分(HPHCs)のプロファイリングを有効スクリーニングツール、高適用することにより、in vitroで確立することができます局(FDA)。2
初期評価のために、インピーダンスベースの機器は、化合物の毒性のリアルタイム、ラベルフリーの評価のために使用しました。楽器の読み出しは、すべて一緒に、細胞の状態の概要を提供し、細胞接着、生存率および形態に依存しています。セル・インデックス命名無次元パラメータは、定量化のために使用されます。 DIFのセットferent染色プロトコルは、蛍光イメージングベースの調査のために開発されたとHCSプラットフォームは、各HPHCにより誘発される細胞毒性の種類により詳細な情報を得るために使用されました。
彼らは計算LD 50(<20 mm)を登録として試験15の構成要素のうち、5つだけはHCSベースの分析のために選択しました。これらは、1 aminonaphtalene、ヒ素(V)、クロム(VI)、クロトンアルデヒド及びフェノールが含まれていました。 HCSにおけるそれらの効果に基づいて、1-aminonaphtalene及びフェノールを増加ヒストンH2AXのリン酸化に基づく遺伝毒性としてクロム(VI)と一緒に、ミトコンドリア機能障害を誘発することが同定され、そしてすることができます。クロトンアルデヒドは、ストレスキナーゼ経路の活性化因子としての酸化ストレス誘導物質とヒ素と同定しました。
この研究は、インピーダンスに基づくとHCSの技術の組み合わせは、CS成分のin vitro評価のための強力なツールを提供することを示しています。
毒物学的リスク評価は、歴史的に生命科学の基本的なものの、また、そのような人間には一貫性のない翻訳可能、高コストなどの欠点にリンクされている、動物モデルの使用に頼ってきました。また、「3Rに「2(交換、縮小、および洗練)の精神で動物実験代替法を見つけるために増加努力がなされてきました。この取り組みは、過去数年間で加速しているためだけでなく、特に欧州連合のようなハイスループット技術と、だけでなく、ために動物試験の使用を制限する法律のシステム生物学のアプローチとして最近の進歩、の。
毒性傷害への応答を調節する細胞シグナル伝達経路の複雑さは、それが明らかに単一の毒性学的エンドポイントを使用すると、特定の化合物の毒性学的根拠を説明するのに十分ではないことになります。このため、相互作用のpの何百もの相互作用生物学的ネットワークに貢献roteinsについても考慮することが必要になります。これらのネットワーク上の毒物の影響を研究するために、表現型の中・高スループットスクリーニングアッセイと組み合わせたシステム毒物学アプローチは、効力を推定すると同時に、個々の毒性物質の作用機序に関する詳細な情報を提供するのに有用です。
この研究では、我々は、プロセスを取得し、特定の蛍光ベースの細胞アッセイから導出された画像データを分析することができる自動顕微鏡及び生物学的ソフトウェアアプリケーションで構成されている強力なスクリーニングツールとして、HCSを用います。これは、単一細胞または細胞下レベルで定量化する細胞内の視覚的変化を可能にし、多くのパラメータが同時に分析される。3、例えば、DNA二本鎖切断は、ヒストンH2AXのリン酸化の抗体ベースの識別を用いて評価したと活性酸素種(ROS)は、細胞パーマを用いて定量しました。eableスーパーオキシド感受性色素。
肺上皮細胞は、タバコの煙などの吸入毒性物質に対する最初の生物学的障壁を代表しているので、我々は、米国食品医薬品局によって発行されたHPHCsの効果をプロファイリングするためのin vitroモデルとして、一次気管支上皮細胞を利用した。4この原稿はフォローです我々はHPHCsの異なるサブセットの生物学的影響を評価した先行研究5に-UP。
in vitroでの細胞毒性を評価するために我々のワークフローの一環として、我々は最初に、後続のHCSに適した、私たちは、用量範囲を確立することを許可されたインピーダンスに基づくリアルタイム細胞解析(RTCA)システムを使用して、15 HPHCの選択の効力を評価しました分析( 図1)。次に細胞毒性九マルチパラメトリックエンドポイントを用いて行った毒性HCS評価は、それぞれ2つの時点(4及び24時間)でモニター。 表1に記載したように、7活性、シトクロムCの放出及び細胞膜透過性-使用されるマーカーは、ミトコンドリア毒性、DNA損傷、ストレスキナーゼ、活性酸素種(ROS)、グルタチオン(GSH)含量、カスパーゼ3を示しました。
我々のアプローチは、用量および時間依存のサンプリングを通じてタバコの煙成分の効果の同定および特徴付けを可能にしました。最終的に、これは各HPHCのためのin vitroでの毒性学的プロファイルを生成しました。マルチオミクスアプローチはまた、HCS解析を補完するために使用することができます。これは、最終的にはまた、細胞シグナル伝達および/または転写レベルでの影響のより深い理解を提供するであろう。
1.収穫正常ヒト気管支上皮細胞(NHBEs)
2.リアルタイムセルアナライザー(RTCA)は線量測距(DRF)ベース
注:1)2)を選択した化合物をさらにHCSによって調査されるように、化合物の毒性を評価し、3)HCSのための適切な用量を選択:インピーダンスに基づく測定システムをするために使用されました。 RCTAプレート中のNHBE細胞を、各ウェルに100μlの培地中に存在する試験化合物の希釈液を25μl添加することにより、投与されています。したがって、すべての試験溶液を、5倍(5X)、所望の最終濃度で調製されます。
3. HCSによって毒性作用を測定します
注:6の異なるアッセイでグループ化された毒性九マルチパラメトリックマーカーの合計は、HCSプラットフォーム( 表1)を用いて測定されます。 RTCA細胞生存率分析(セクション2)に基づいて、各成分の用量範囲が定義され、3R4F参照量も含まれます。参照用量は、基準シガレット3R4Fから1スティックの煙中HPHCの存在量に相当します。
RTCA
毒性効果が検出されないときHCSエンドポイントは有益ではありませんので、表示されないこれらの化合物は、HCS( 図3b、C、D、G、K、L、MでテストされていないRCTA中の最高濃度に細胞生存率のアップを減少させました、P)。示す化合物は、唯一の最高濃度で細胞生存率を減少させた( 図3eは、oは )また、HCSのために選択解除されています。最後に、計算LD 50(<20ミリモル)を持つ唯一の成分をさらにHCS解析( 図 3a、F、H、J、N)のために選択されます。上記の基準を満たすHPHCsは次のとおりです:1-aminonaphtalene、ヒ素(V)、クロム(VI)、クロトンアルデヒドとフェノール。
HCS
品質チェック(QC)のように、ポジティブコントロールはFiのです最初に正しく実行される染色手順を保証するために分析しました。陽性対照処理細胞の代表的な写真を図6に示す。先に説明したように、データ値が車両に正規化されます。いいえ用量反応曲線はわずか3回の投与がテストされているとしてプロットされておらず、すべての3用量は、すべての時点で考慮されません。適切な応答は、4時間および24時間の両方で、各エンドポイントのために観察されるように、陽性対照の用量が選択されている(以前の実験に基づいて、データは示さず)。特定の用量で1及び2は、用量2及び3は、24時間で効果を評価するために使用される4時間で効果を評価するために使用されます。応答は、陽性対照の用量について観察されない場合、プレートは廃棄されます。すべてのエンドポイントのために、ミトコンドリア膜電位とGSH量を除いて、信号強度の増加が期待されていることに注意してください。
フェノールを除くすべての化合物は、壊死性フェノを誘導しました型、増加した細胞膜透過性( 図7a、F、H、L)に基づきます。 1- aminonaphtalene、クロム(VI)は、クロトンアルデヒドおよびフェノールを増加ヒストンH2AXのリン酸化( 図7E、J、N、P)に基づいて、遺伝子毒性であるとして同定されました。フェノールおよび1- aminonaphtaleneは、1 aminonaphtaleneと、増加したシトクロムcの放出( 図7c)に導か、重度ミトコンドリア機能不全( 図7b、O)を誘発することが見出されました。増加したカスパーゼ3/7活性の検出は、クロム露光によりアポトーシス事象の証拠を提供しました。酸化ストレス誘導(ROSまたはGSH)は、1-aminonaphtalene、クロトンアルデヒドとフェノール( 図7d、M、Q)で処理して検出しました。転写因子cJun( 図7gの )のリン酸化の増加によって示されるように、最終的に、ヒ素は、細胞ストレスを誘導します。
ロード/ 53987 / 53987fig1.jpg "/>
図1.化合物のTox-プロファイラワークフロー。a) は、ワークフローの概略は、本研究で行いました。まず、用量範囲の発見は、後続のHCSは、化合物固有の毒性プロフィール。B)試験の実験設計を特徴付けるための適切な用量を選択するために、RTCAプラットフォームを用いて行きました。 HCSのエンドポイントは、投与後4および24時間を調査したのに対し、播種後24時間は、細胞は、次の24時間にわたって投与し、インピーダンス値を継続的に監視した。この図の拡大版をご覧になるにはこちらをクリックしてください。
図2. RTCA露出プレート。化合物マスタープレートは、最初の5つのステップ1時10連続希釈を実行することによって生成されます。各化合物、ビヒクル対照(線量0)などは、その後コントロールとして培地およびスタウロスポリンと共に露光プレートに三連で添加されます。車両のコントロールが行番号7にある間シーケンスは、転送時に維持されている用量は、最高用量は行番号1であることに注意してください。この図の拡大版をご覧になるにはこちらをクリックしてください。
図3の代表RTCA細胞生存率をもたらす。a)1-aminonaphtalene、B)2-ニトロプロパン、C)アセトアミド、D)アセトン、E)アクリルアミド、F)、ヒ素(V)、G)ベンゼン、H)、クロム(VI) 、J)クロトンアルデヒド、k)はメチルエチルケトン、L)NickeL(II)において、m)ニトロベンゼン、N)フェノール、o-)キノリン、p)のトルエン。 24時間の投与後に、曲線下面積(AUC)が0から0の活動を反映する100%活性(y軸)の範囲の正規化(陽性対照およびビヒクルを含む)を各用量について計算しました。車両および陽性対照の-100。可能性、LD 50を算出したときの値は、その後、プロットし、装着4パラメータHill式を使用しました。濃度は対数スケール(X軸)上に発現されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
HCSアッセイの陽性対照化合物については、図4の希釈スキーム。ポジティブコントロールのa)の追加とVEの5倍の投与量を含むポジティブコントロールプレートを生成するために、培地中の200倍陽性対照の用量(1:40)の連続希釈プレートにhicle。ポジティブコントロールのb)の段階希釈するc)200X陽性対照の用量。 デ)希釈。各用量は露光プレートで最終レイアウトを反映するために、三連で希釈されることに注意してください)。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図5 HCS露出プレート。化合物マスタープレートは、最初の5つの段階希釈を行うことにより生成されます。車両制御を含む各化合物(投与量0)をポジティブコントロールと一緒に露光プレートに三連で添加されます。 、用量の順序が転送時に維持されていることに注意してください車両のコントロールが行番号7にいる間最高用量は、行番号1である。この図の拡大版をご覧になるにはこちらをクリックしてください。
抗体または染料染色細胞の図6.代表的蛍光写真 a)は、 原子力のパラメータ - 原子力染料 :ライブまたは固定された細胞内のDNAに結合する透過性染料。この染色は、核領域を標識する個々の細胞を同定するために使用されるB) 壊死 - 細胞膜透過性色素 :細胞膜の完全性の染料ベースの検出。試薬は、細胞膜に本質的に不透過性です。壊死の間に、膜が透過性になり、色素が細胞に入ると、強い蛍光Sを生成するDNAに結合しますignal c)の アポトーシス - チトクロームC:シトクロムC放出、初期アポトーシスのよく知られた特徴での抗体ベースの検出。アポトーシスの誘導の際に、シトクロムcは、ミトコンドリアから放出され、核d)の DNA損傷に拡散- pH2AX:ヒストンH2AXのリン酸化の抗体ベースの検出、二本鎖DNA切断の周知の特徴E) ストレスキナーゼ - cJun:。のSer-73 cJunの、細胞ストレスのよく知られた特質でのリン酸化の抗体ベースの検出f)は 酸化ストレス - DHE:スーパーオキシドラジカルの染料ベースの検出。 。無料GSH分子の色素ベースの検出:mBcl -酸化型エチジウムはDNAインターカレーショングラムの際に赤い蛍光を発するながらジヒドロ自体はGSH)は、細胞質内の青色蛍光を発します。 mBclはへのGSHと反応します高度蛍光産物を生成する時間) アポトーシス - カスパーゼ3/7活性化 :カスパーゼ3/7活性の染料ベースの検出。試薬は、DNA結合を阻害する4つのアミノ酸ペプチドで非蛍光性です。カスパーゼ3月7日活性化されると、ペプチドは、DNAに結合し、明るい、蛍光性応答を生成するために、色素を可能に切断されます。パネルBHは、陽性対照で処理した細胞を示す。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図7.代表的HCS結果。1-aminonaphtalene(AE)、ヒ素(V)(FとG)、クロム(VI)(HK)、クロトンアルデヒド(LN) とフェノール(OQ)。 4時間(青線)と24時間(オレンジ色のライン)の信号は、それぞれの用量について算出し、車両活性(0%)に標準化しました。カーブフィッティングの計算には含まれていない値はグレーで表示されています。濃度は対数スケール(X軸)上に発現されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
検定 | エンドポイント# | 生物学的エンドポイント | 細胞内コンパートメント | 出力機能 |
細胞毒性 | 1 | ミトコンドリア質量6 | 細胞質 | スポット平均面積 |
2 | ミトコンドリア膜電位6 | 細胞質 | スポット平均強度 | |
3 | シトクロムC放出 7 | 核 | 平均強度 | |
4 | 細胞膜透過性8 | 核 | 平均強度 | |
DNA損傷 | 5 | ホスホH2AX 9 | 核 | 平均強度 |
ストレスキナーゼ | 6 | ホスホcJun 10 | 核 | 平均強度 |
ROS | 7 | ROS 11 | 核 | 平均強度 |
GSHコンテンツ | 8 | GSH 12 | 細胞質 | スポット平均強度 |
アポトーシス | 9 | カスパーゼ3 13 | 細胞質 | スポット平均強度 |
HCS aの表1のリストssaysおよびエンドポイント。
車両 | RTCAの用量(μM) | LD 50 | HCSの用量 | |||||||||||
細胞生存率-選択(μM) | 3R4F(NM) | |||||||||||||
1-Aminonaphtalene | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | 280μM | 2,000 | 500 | 200 | 150 | 0.27 | |
2-ニトロプロパン | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
アセトアミド | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
アセトン | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
アクリルアミド | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
ヒ素(V) | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | 160μM | 200 | 100 | 50 | 25 | 0.17 | |
ベンゼン | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
クロム(VI) | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | 20μM | 100 | 50 | 20 | 10 | 0.06 | |
クロトンアルデヒド | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | 200μM | 2万 | 2,000 | 200 | 20 | 2,000 | |
メチルエチルケトン | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | >20 mMの | ||||||
ニッケル | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
ニトロベンゼン | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
フェノール | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | 2300μM | 5,000 | 2,000 | 千 | 500 | 240 | |
キノリン | エタノール | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの | ||||||
トルエン | 水 | 2万 | 2,000 | 200 | 20 | 2 | 0.2 | > 20 mMの |
表2 の処理の24時間で 相対LD 50 でテスト済みHPHC化合物のリスト 。HCS分析のために選択された化合物は、オレンジ色で強調表示され、試験した用量も与えられています。 3R4F線量が基準シガレット3R4Fから1スティックの煙中に存在する成分の量に相当します。
検定 | 化合物 | 貯蔵液 | 溶媒 | 用量(複数可)(μM) | ||
細胞の生存 | スタウロスポリン | 10 mMの | DMSO | 50 | ||
細胞毒性 | バリノマイシン | 10 mMの | DMSO | 50 | 20 | 5 |
DNA損傷 | パラコート | 100 mMの | DMSO | 500 | 200 | 50 |
ストレスキナーゼ | アニソマイシン | 2 mMの | DMSO | 10 | 4 | 1 |
ROS | ロテノン | 200 mMの | DMSO | 千 | 400 | 100 |
GSHコンテンツ | エタクリン酸 | 200 mMの | DMSO | 千 | 400 | 100 |
アポトーシス | スタウロスポリン | 40 mMの | DMSO | 200 | 50 | 20 |
各アッセイのために使用されるポジティブコントロールと濃度の表3のリスト。
動物実験の代替のための、新しい高スループットのテストアプローチの必要性が広く、過去数年にわたって議論されてきました。これは、密接に標的組織の生理機能を模倣する細胞アッセイを利用し、標準的な毒性試験のための別の方法を調査する科学者や規制当局をリードしてきました。本研究では、ヒト肺上皮細胞上の単一のCSの成分への暴露の影響を評価するために、高含有量スクリーニング(HCS)プラットホームでのリアルタイムセルアナライザー(RTCA)の合成の適用可能性を実証しました。この設定は、同様に様々な他の大気汚染物質、浮遊粒子、およびナノ粒子により誘導される細胞毒性を評価するために適用することができます。また、得られた結果は、原因生物学的ネットワークに基づいて、全ゲノムトランスクリプトミクスおよび計算方法のものと一致させることができます。以前に報告されたように、このアプローチは、分子経路のデータを確証することができましたHCSのエンドポイントとCS暴露5時摂動、また表現型これらの経路摂動に対処します。
フローチャートアッセイとして、リアルタイム細胞分析は、用量および曝露時間点は、下流分析14のために有利で あり得る、より良い意思決定を可能にする用量および時間依存分解能における細胞生存率に関連する情報を提供します。アナライザの原理は、彼らが金の微小電極で覆われた培養ウェルの表面に付着し、スプレッドとして細胞によって生成された電気インピーダンスの変化に依存しています。インピーダンスは、細胞接着、拡散、形態および最終的に細胞生存率を監視するために使用することができる細胞指数命名無次元パラメータに変換されます。この技術は、細胞傷害性のメカニズムについての情報を提供していないものの、その感度もHCSが有益でないれる非常に低用量での形態学的細胞変化の検出を可能にする(データは示さず)。 previに基づき、OUの実験では、我々は、RTCA方法がHCSエンドポイントと比較して低用量での形態学的変化を検出することができることを指摘しています。
リアルタイム細胞分析装置との最初のスクリーニングに続いて、HCSプラットフォームは、各HPHCによって誘発される細胞毒性の種類により詳細な情報を得るために使用されました。細胞区画上の潜在的な影響の方にHPHCsをプロファイルするために許可されたHCSアッセイパネル/細胞小器官だけでなく、遺伝毒性や酸化ストレスを誘発するものを同定します。分析は、選択HPHCsはNHBE細胞で細胞毒性を誘導することにより個別のプロファイルを明らかにしました。一般的に、全ての化合物は、フェノールを除いて、試験した最高用量で壊死を誘導することが見出されました。ミトコンドリア毒性の読み出し(質量の増加とチトクロームC releaでこのHPHCのがHCSパネルも覆われていないアクティビティ遺伝毒性のためのマーカーとして癌の発症における潜在的役割H2AXの1-aminonaphtalene誘導性リン酸化と一致して、SE)と酸化ストレス(GSH枯渇)。前述のように同様に、フェノールは、ミトコンドリア機能障害を誘発し、DNA損傷並びにGSH枯渇を引き起こすことが確認されました。特にクロム(VI)中のクロム(VI)、グループI発がん物質として分類される化合物の一つであり、クロトンアルデヒドはまた、両方の遺伝毒性として同定されたが、また、アポトーシス(カスパーゼカスケードの活性化)を誘導し、クロトンアルデヒドは、ROSの生成を増加させました。最後に、ヒ素(V)は、ストレスキナーゼ経路活性化のマーカーであるcJunリン酸化を誘導することが見出されました。
本研究では、in vitroでの肺上皮細胞のモデルとしてNHBE細胞を利用しました。 HCSの設定でこれらの細胞を使用することは前例がないと遺伝毒性および酸化ストレスマーカーを含むエンドポイント、より広い範囲の調査を可能にしました。生細胞および固定細胞染色のアプローチの両方が、全体的な技術の柔軟性を示す、我々のプロトコル内で説明されました。 Fで行為は、非常に同様のプロトコルは、任意の蛍光染料または抗体を使用することによって対処することができるターゲットのより広い範囲に適用することができます。染料の一部が制限された半減期を有し、画像の取得が完了する前に蛍光シグナルが低下するように、ライブ染色プロトコルを正常に実行するためには、インキュベーション時間を尊重することが重要です。異なる細胞タイプが使用される場合、最適な色素濃度およびインキュベーション時間は異なっていてもよいように、すべての染色条件は、再評価されるべきであることを考慮することも重要です。
現在の論文では、唯一の5つの化合物は、HCSの方法論を用いてスクリーニングシナリオを記載しています。先に述べたプレートレイアウトを考えると、彼らはそれによって複数の化合物の同時スクリーニングを可能にする、プレートの選択図数も増加させることができた24のプレート(6アッセイおよび2時点)の合計2つの異なるプレートセット上で投与しましたかinves複数のエンドポイントのtigation。その前に、しかし、1は、特定のエンドポイント(GSH及びROS)は即時取得を必要とし、結果として、プレートの投与は、前版の取得を可能にするために、千鳥状に行われるべきであることを考慮に入れる必要があります。プレートを後の段階で染色手順の完了を、固定後の任意の段階でプロトコルを中断、積み重ねることができるように一方、固定細胞染色プロトコルを使用する利点を示します。このアプローチは、例えば、データの品質を損なうことなく、すべての生細胞染色プレートを完了するまでの時間をオペレータに提供します。
さらにプレートの数を減少させることによって、ワークフローを最適化するために、また、一緒に複数のエンドポイントを多重化することが可能です。たとえば、このコンテキストDNA損傷とストレスでキナーゼは、単に別の(c)に発光する蛍光色素で2二次抗体を使用して一緒に調査することができましたhannels。完全に自動化された細胞播種、化合物希釈液、投薬および染色、ならびに新しいエンドポイントの追加を含むHCSプラットフォームの継続的な開発は、さらに上皮上HPHCsおよび他の細胞型のための強力なプロファイリングツールとしてHCSプラットフォームの機能を拡張します。
すべての著者は、フィリップモリスの従業員です。フィリップモリスは、このプロジェクトの資金調達やスポンサーの唯一の供給源です。
著者は、原稿の彼らのレビューのためにKarsta LuettichグレゴリーVuillaumeに感謝したいと思います。
Name | Company | Catalog Number | Comments |
Cellomics ArrayScan VTI HCS Reader | Thermo | N01-0002B | |
xCelligence RTCA MP | ACEA | 05331625001 | |
Screener (HCS) | Genedata | NA | |
CASY counter TTC | Roche | 05 651 719 001 | |
e-Plates VIEW 96 | ACEA | 06 472 451 001 | |
RTCA Frame 96 | ACEA | 05232392001 | |
RTCA Cardio Temperature Tool | ACEA | 2801171 | |
Plate sealer breathseal | Greiner bio-one | 676051 | |
Normal Human Bronchial Epithelial cells (NHBE) | Lonza | CC-2540 | non-smoking 60-year-old Caucasian male donor |
BEGM BulletKit | Lonza | CC-3170 | Warm at 37 °C before use |
ReagentPack Subculture Reagents kit | Lonza | CC-5034 | Warm at 37 °C before use |
Penicillin/Streptomycin (100x) | Corning | 30-002-CI | |
Easy Flask filter cap 75 cm2 | Thermo Scientific | 12-565-349 | |
96 well assay plate black | Corning | 3603 | |
Hoechst 33342 | Fisher Scientific | PI-62249 | |
Draq5 (For Far Red Nuclear Staining) | Biostatus | DR50200 | |
Mitochondrial Dye: MitoTracker Red CMXRos | Life technologies | M-7512 | |
Mitochondrial Dye: MitoTracker Red CM-H2XRos | Life technologies | M-7513 | |
ROS Dye: Dihydroethidium | Sigma | D7008 | |
ROS Dye: CellROX | Life technologies | C10422 | |
ROS Dye: MitoSOX | Life technologies | M36008 | |
GSH Dye: Monochlorobimane | Sigma | 69899 | Toxic |
GSH Dye: Monobromobimane | Life technologies | M-1378 | Toxic |
Membrane permeability Dye: YO-PRO-1 | Life technologies | Y3603 | Irritating |
Membrane permeability Dye: TO-PRO-1 | Life technologies | T3602 | Irritating |
Membrane permeability Dye: TOTO-1 | Life technologies | T3600 | Irritating |
Caspase Dye: Cellevent Caspase 3/7 green | Life technologies | C10423 | Irritating |
Anti-Cytochrome C antibody (Mouse) | Thermo | MA5-11823 | |
Anti-phospho-c-Jun antibody (Mouse) | Thermo | MA5-15889 | |
Anti-phospho-H2AX antibody (Mouse) | Thermo | MA1-2022 | |
Goat anti-Mouse IgG DyLight 650 | Abcam | ab96878 | |
10x permeabilization buffer | Fisher | 8408400 | |
4% Formaldehyde solution | Sigma | F1635 | Toxic |
10x blocking buffer | Fisher | 8408500 | |
Dulbecco’s Phosphate Buffered Saline | Sigma | D8537 | |
Hanks' Balanced Salt solution | Sigma | H8264 | |
Staurosporine | Sigma | S4400 | Toxic |
Valinomycin | Sigma | V0627 | Toxic |
Paraquat | Sigma | 36541 | Toxic |
Anisomycin | Sigma | A9789 | Toxic |
Ethacrynic acid | Sigma | E4754 | Toxic |
1-Aminonaphthalene | Sigma | 34390 | Toxic |
2-Nitropropane | Sigma | 130265 | Toxic |
Acetamide | Sigma | 695122 | Toxic |
Acetone | Sigma | 650501 | Toxic |
Acrylamide | Sigma | A9099 | Toxic |
Arsenic (V) | Sigma | A6756 | Toxic |
Benzene | Sigma | 12540 | Toxic |
Chromium (VI) | Sigma | 216623 | Toxic |
Crotonaldehyde | Sigma | 262668 | Toxic |
Methyl ethyl ketone | Sigma | 34861 | Toxic |
Nickel | Sigma | 203866 | Toxic |
Nitrobenzene | Sigma | 48547 | Toxic |
Phenol | Sigma | P5566 | Toxic |
Quinoline | Sigma | 241571 | Toxic |
Toluene | Sigma | 34866 | Toxic |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved