このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.
本稿では報告アレイ設計C 84は、Si基板を超高真空チャンバ内で制御自己組織化法を用いて作製-embedded。 C 84の特性は、状態の局所電子密度、バンドギャップエネルギー、電界放出特性、ナノ剛性、表面磁性が超下表面分析、様々な技術を用いて調べた、そのような原子分解能地形として、Si表面を-embedded高真空(UHV)条件だけでなく、大気のシステム。実験結果は、C 84の高い均一性は、Si表面が制御自己組織化ナノ機構を使用して製造-embeddedフィールドエミッションディスプレイ(FED)、光電子デバイスの製造、切削工具MEMSの応用において、努力において重要な発展を示し実証しますカーバイド半導体のための適切な代替品を見つけることができます。半経験的ポテンシャルと分子動力学(MD)メソッドは、bはできC 84のナノインデンテーションを研究するために使用した電子は、Si基板を-embedded。 MDシミュレーションを実行するための詳細な説明はここに提示されています。このような押し込み力、ヤング率、表面剛性、原子ストレス、および原子株とMDシミュレーションの機械的分析に関する総合的研究のための詳細が含まれています。インデントモデルの原子ストレスおよびフォン・ミーゼスひずみ分布は、原子レベルでの時間評価の変形メカニズムを監視するために計算することができます。
フラーレン分子及びそれらが含む複合材料は、その優れた構造特性、電気伝導性、機械的強度、および化学的性質1-4によるナノ材料の中で独特です。これらの材料は、電子機器、コンピュータ、燃料電池技術、太陽電池、電界放出技術5,6のような分野の範囲内の非常に有益であることが証明されています。
これらの中でも、炭化シリコン(SiC)、ナノ粒子複合体は、その広いバンドギャップ、高い熱伝導性及び安定性、高い絶縁破壊能力、及び化学的不活性に特に注意のおかげを受けています。これらの利点は、光電子デバイス、金属酸化膜半導体電界効果トランジスタ(MOSFET)、発光ダイオード(LED)、高電力、高周波、及び高温の用途において特に明らかです。しかしながら、高密度の欠陥は、一般的にconventiの表面上に観察さonal炭化ケイ素も装置故障7,8につながる、電子構造に有害な影響を有し得ます。 SiCのアプリケーションは1960年以来研究されてきたという事実にもかかわらず、この特定の未解決の問題が残ります。
本研究の目的は、C 84の製造は、得られる材料の電子、光電子、機械、磁気、電界放出特性の総合的な理解を得るために、Si基板のヘテロ接合とその後の分析を-embeddedました。我々はまた、分子動力学計算の新規のアプリケーションを介して、ナノ材料の特性を予測する数値シミュレーションを使用しての問題を取り上げました。
注:用紙が半導体基板の表面上に自己組織化フラーレン・アレイの形成に使用される方法の概要を説明します。具体的には、微小電気機械システム(MEMS)における電界エミッタまたは基板として使用するためのフラーレン内蔵シリコン基板を製造するための新規な方法、および高温、高出力、アプリケーションと高中で光電子デバイスを提供します-frequencyデバイス9-13。
Si基板上のC 84の六角クローズパッケージ化(HCP)上層の1製作
C 84 -embedded Si基板の電子物性の2.測定
表面磁性の3測定
AFMによるナノメカニカルプロパティの4.測定
注:原子間力顕微鏡(AFM)を提供材料と機械的性質の特徴づけのための強力なツール空気中のマイクロ・ナノスケールでだけでなく、UHV環境で
MDシミュレーションによるナノメカニカルプロパティの5.測定
注:シミュレーション部では、OVITO 16(オープンソースvisualizatiソフトウェア上で)と、OSSD 17(オープン表面構造データベース)は、シミュレーションモデルおよび結果の視覚化を作成するために使用されます。 LAMMPS 14(オープンソースの分子動力学(MD)シミュレーションパッケージ)は、ナノインデンテーションのシミュレーションを行い、シミュレーション15を結果分析するために使用されます。すべてのシミュレーションジョブがNCHCの高度な大規模並列スーパークラスター(ALPS)で並列計算を用いて行われます。
注:MDシミュレーションを使用してC 84単層/ Si基板ヘテロ接合を研究するためには、Si基板内に埋め込まれたリラックスしたC 84単層を得るために、いくつかのステップによって、シミュレーションモデルを用意する必要があります。原因でC 84単層とSi(111)基板のヘテロ接合との間の相互の構造の複合体の、実験データから全く同じ構造を生成することが困難であることに留意されたいです。その結果、手順のいくつかのステップでのシミュレーションモデルを生成するための人工的な方法を使用して、これは、 図5に示されている。詳細は以下のプロトコルに記載されています。我々はセットアップにどのようLAMMPSでMDのパラメータを記述し、基板内に埋め込まれたリラックスしたC 84フラーレン単層を確立し、インデントの手順を実行し、シミュレーション結果を分析します。
。乱れたSi(111)表面上のC 84分子の単分子層は、 図1のUHVチャンバ内に制御自己組織化プロセスを用いて製造カバレージの種々の程度でUHV-STMによって測定トポグラフィ画像の系列を示した:(A) 0.01 ML、(B)0.2 ML(C)0.7 ML、および(d)0.9 ML。 C 84埋め込まれたSi基板の電子的及び光学的特性はまた、STM及びPL( 図2)のような表面分析技術の様々な?...
本研究では、新規のアニール処理を経て、Si基板上にC 84の自己組織化単分子膜( 図1)の製造を実証します。このプロセスはまた、ナノ粒子に埋め込まれた半導体基板の他の種類を調製することができます。 C 84は、Si基板をUHV-STM( 図2)、電界発光分光計、フォトルミネッセンス分光、MFMとSQUID( 図3)を使用して、原子...
著者らは、開示することは何もありません。
The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.
Name | Company | Catalog Number | Comments |
Silicon wafer | Si(111). Type/Dopant: P/Boron; Resistivity: 0.05-0.1 Ohm·cm | ||
Carbon, C84 | Legend Star | C84 powder, 98% | |
Hydrochloric acid | Sigma-Aldrich | 84422 | RCA, 37% |
Ammonium | Choneye Pure Chemical | RCA, 25% | |
Hydrogen peroxide | Choneye Pure Chemical | RCA, 35% | |
Nitrogen | Ni Ni Air | high-pressure bottle, 95% | |
Tungsten | Nilaco | 461327 | wire, diameter 0.3 mm, tip |
Sodium hydroxide | UCW | 85765 | etching Tungsten wire for tip |
Acetone | Marcon Fine Chemicals | 99920 | suitable for liquid chromatography and UV-spectrophotometry |
Methanol | Marcon Fine Chemicals | 64837 | suitable for liquid chromatography and UV-spectrophotometry |
UHV-SPM | JEOL Ltd | JSPM-4500A | Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope |
Power supply | Keithley | 237 | High-Voltage Source-Measure Unit |
SQUID | Quantum desigh | MPMS-7 | Magnetic field strength: ±7.0 Tesla, Temperature range: 2–400 K, Magnetic-dipole range: 5 × 10-7 – 300 emu |
ALPS | National Center for High-performance Computing, Taiwan | Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1,074 TB storage |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved