JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.
이 논문은 어레이 디자인 C (84)의 Si 기판 - 임베디드은 초고 진공 챔버 내에 제어 된 자기 조립 방법을 이용하여 제조보고한다. 은 C (84)의 특징은, 이러한 원자 해상도 지형 상태 로컬 전자 밀도, 밴드 갭 에너지, 전계 방출 특성, 나노 기계 강성, 표면 자력으로, 실리콘 표면 - 임베디드 울트라 하에서 표면 분석하는 다양한 기술을 이용하여 조사 하였다 높은 진공 (UHV) 조건뿐만 아니라에서 대기 시스템. 실험 결과는 C (84)의 높은 균일 성 실리콘 표면이 제어 된 자기 조립 나노 메커니즘을 사용하여, 절삭 공구, 전계 방출 디스플레이 (FED), 광전자 소자 제조, MEMS의 응용에서 중요한 발전을 나타낸다하여 제조 - 임베디드 및 노력 입증 카바이드 반도체에 적합한 교체를 찾을 수 있습니다. 반 경험적 잠재력을 가진 분자 역학 (MD) 방법은 수 bC (84)의 나노 압입을 연구하는 데 전자는 Si 기판을 - 임베디드. MD 시뮬레이션을 수행하기위한 상세한 설명은 여기에 제공된다. 들여 쓰기의 힘, 탄성 계수, 표면 강도, 원자 스트레스, 원자 변형 등의 MD 시뮬레이션의 기계적 분석에 대한 종합적인 연구를위한 세부 사항이 포함되어 있습니다. 압입 모델의 원자 스트레스 - 폰 미제스 응력 분포는 원자 적 레벨 시간 평가를 변형 메커니즘을 모니터링하도록 계산 될 수있다.
풀러렌 분자와 그들의 우수한 구조적 특성, 전기 전도성, 기계적 강도, 화학적 특성 1-4 그들은 나노 물질 중 독특한입니다 구성하는 복합 재료. 이들 재료는 전자, 컴퓨터, 연료 전지 기술은 태양 전지, 및 전계 방출 기술 5,6- 같은 분야의 범위에서 매우 유익 입증되었다.
이들 재료 중에서, 실리콘 카바이드 (SiC) 나노 입자 복합체는 넓은 밴드 갭, 높은 열 전도성과 안정성, 높은 전기 브레이크 능력, 및 화학적 불활성 특히주의 덕분 받았다. 이러한 이점은 광전자 장치에 특히 명백하며, 금속 - 산화물 - 반도체 전계 효과 트랜지스터 (MOSFET), 발광 다이오드 (LED)와 고출력, 고주파, 고온 응용. 그러나, 고밀도 결함은 일반적 conventi 표면 관찰도 그러 탄화 규소 심지어 장치 고장 7,8 선도 전자 구조에 악영향을 가질 수있다. SiC로 애플리케이션이 1960 년부터 연구되어 있다는 사실에도 불구하고, 이러한 특정 미해결 문제가 남아있다.
이 연구의 목적은 C (84)의 제조가 생성 된 물질의 전자 광전자, 기계, 자기, 현장 방출 특성의 포괄적 인 이해를 얻기 위해 Si 기판의 이종 접합 및 후속 분석 - 임베디드이었다. 또한, 분자 역학 계산의 새로운 애플리케이션을 통해, 나노 물질의 특성을 예측하는 수치 시뮬레이션을 이용하여 문제를 해결.
주 :이 논문은 반도체 기판의 표면에 자기 조립 풀러렌 어레이의 형성에 사용되는 방법을 설명합니다. 특히, 높은뿐만 아니라 마이크로 전자 기계 시스템 (MEMS), 고온, 고출력의 광전자 장치 애플리케이션에서 전계 방출 또는 기판으로 사용하는 풀러렌 매립 실리콘 기판의 제조를위한 새로운 방법을 제시 - 주파수 장치 9-13.
1. 제작 육각형은 폐쇄 패키지 (HCP) 오버 C (84)의 실리콘 기판에
C (84)의 전자 등록 2. 측정시 기판을 - 임베디드
표면의 자성 3. 측정
AFM에 의한 나노 기계 등록 4. 측정
참고 : 원자 힘 현미경 (AFM)을 제공하는마이크로의 재료 및 기계적 특성 및 공기 나노 스케일의 특성화뿐만 아니라 UHV 환경에서 강력한 도구
MD 시뮬레이션에 의한 나노 기계 등록 5. 측정
참고 : 시뮬레이션 섹션에서 OVITO 16 (오픈 소스 visualizati소프트웨어)와, OSSD 17 (개 방면 구조 데이터베이스) 시뮬레이션 모델 결과의 시각화를 만드는 데 사용된다. LAMMPS 14 (오픈 소스의 분자 동력학 (MD) 시뮬레이션 패키지)는 나노 압입 시뮬레이션을 수행하여 시뮬레이션 결과 15를 분석하는데 사용된다. 모든 시뮬레이션 작업은 고급 대규모 병렬 초 은하단 NCHC의 (ALPS)에서 병렬 컴퓨팅으로 수행된다.
주 : MD 시뮬레이션을 사용하여 84 C 단일 층 / Si 기판에 헤테로 접합을 연구하기 위해, 하나의 Si 기판에 삽입 편안 C 84 단층을 얻기 위해 여러 단계에 의한 시뮬레이션 모델을 준비한다. 이 때문에 C 단층 (84) 및 Si (111) 기판 헤테로 사이의 층간 구조의 복합체, 실험 데이터로부터 정확히 동일한 구조를 생성하기 어렵다는 것을주의. 그 결과,이 방법의 여러 단계를 시뮬레이션 모델을 생성하는 인위적인 방법을 사용하여,이는도 5에 도시되어있다. 상세는 다음 프로토콜에 설명되어있다. 우리는 LAMMPS에서 MD의 매개 변수가 기판에 내장 편안 C 84 풀러렌 단층을 설정 압입 절차를 수행하고 시뮬레이션 결과를 분석하는 방법을 설정에 대해 설명합니다.
. 무질서의 Si (111) 표면에 C 84 분자의 단일 층 1 그림 A UHV 챔버에서 제어 된 자기 조립 공정을 이용하여 제조 따르면 다양한 정도에 UHV-STM 측정 지형 일련의 이미지를 도시 하였다 : (a) 0.01 ㎖, (b) 0.2 ㎖, (c) 0.7 ㎖, 및 (d) 0.9 ML. 84은 C 매립 Si 기판의 전기 광학적 특성은 또한 STM 및 PL (도 2) 등의 표면 분석 기술의 다양한 사용하여 조사 하였다. 결과 샘플의 우수...
본 연구에서는 (도 1) 신규 어닐링 공정을 통해 실리콘 기판 상에 C (84)의 자기 조립 단분자막의 제조를 보여준다. 이 프로세스는 나노 매립 반도체 기판의 다른 종류를 제조 할 수있다. 은 C (84)는 Si 기판은 UHV-STM (도 2), 전계 방출 분광기, 광 발광 스펙트럼, MFM 및 SQUID (도 3)을 이용하여 원자 수준에서 분석되었다 - 임베디드.
저자는 공개 아무것도 없어.
The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.
Name | Company | Catalog Number | Comments |
Silicon wafer | Si(111). Type/Dopant: P/Boron; Resistivity: 0.05-0.1 Ohm·cm | ||
Carbon, C84 | Legend Star | C84 powder, 98% | |
Hydrochloric acid | Sigma-Aldrich | 84422 | RCA, 37% |
Ammonium | Choneye Pure Chemical | RCA, 25% | |
Hydrogen peroxide | Choneye Pure Chemical | RCA, 35% | |
Nitrogen | Ni Ni Air | high-pressure bottle, 95% | |
Tungsten | Nilaco | 461327 | wire, diameter 0.3 mm, tip |
Sodium hydroxide | UCW | 85765 | etching Tungsten wire for tip |
Acetone | Marcon Fine Chemicals | 99920 | suitable for liquid chromatography and UV-spectrophotometry |
Methanol | Marcon Fine Chemicals | 64837 | suitable for liquid chromatography and UV-spectrophotometry |
UHV-SPM | JEOL Ltd | JSPM-4500A | Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope |
Power supply | Keithley | 237 | High-Voltage Source-Measure Unit |
SQUID | Quantum desigh | MPMS-7 | Magnetic field strength: ±7.0 Tesla, Temperature range: 2–400 K, Magnetic-dipole range: 5 × 10-7 – 300 emu |
ALPS | National Center for High-performance Computing, Taiwan | Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1,074 TB storage |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유