Method Article
本稿では、変異を熱安定をスクリーニングヒトセロトニントランスポーターの精製、高親和性抗体を生成し、抗うつ薬のSの -シタロプラムにバインドされたセロトニントランスポーター-抗体複合体を結晶化する方法について説明します。このプロトコルは、他の挑戦的な膜輸送体、受容体、およびチャネルの研究に適合させることができます。
セロトニントランスポーターは、細胞への細胞外セロトニンの「ポンプ」とナトリウムと塩化結合トランスポーターである。 のS -シタロプラムは、セロトニン再取り込みをブロックする、高い親和性を有するセロトニントランスポーターに結合することによりうつ病および不安を治療するために使用される薬物です。ここでは、効率的な手順と、特急、安定化、精製、 およびS -シタロプラムおよびその他の抗うつ薬に結合されたセロトニントランスポーター-抗体複合体を結晶化するためのツールのセットを報告しています。セロトニントランスポーターの安定化変異は、結合アッセイのS -シタロプラムを用いて同定しました。バキュロウイルス形質導入HEK293SのGnTIで発現セロトニン輸送体-細胞は、プロテオリポソームに再構成し、高親和性抗体を産生するために使用しました。我々は、構造研究に有用な抗体を発見するための戦略を開発しました。 Sf9細胞における抗体断片の発現のための直接的なアプローチは、確立されています。トランス-抗体複合体は、この手順を使用して精製した行儀であり、容易に結晶化、3-4オングストロームの解像度にX線を回折するのS -シタロプラムとの複合体を製造します。ここで開発された戦略は、他の挑戦的な膜タンパク質の構造を決定するために利用することができます。
セロトニントランスポーター(SERT)は、細胞膜を横切る1セロトニンの輸送を促進する内在性膜タンパク質です。 SERTはまた、ドーパミンとノルエピネフリントランスポーター2を備えて神経伝達物質ナトリウムシンポーター(NSSs)のファミリーに属します。 SERTは、競争的セロトニントランスポート3を阻害するように作用広く処方されている抗うつ薬や抗不安薬の分子標的です。 SERTは、シナプス間隙からの神経伝達物質を除去するために、ナトリウムのエネルギー的に有利な共輸送を利用します。セロトニン作動性システムの広範な特徴付けは、セロトニン代謝の変化は、気分、睡眠、痛み、認知を含む実質的にすべての神経学的プロセスに影響を与えるように見えることが示されている、と侵略を4ビヘイビア。 SERT機能は、S -シタロプラムなどの抗うつ薬と選択的セロトニン再取り込み阻害薬(SSRI)の使用により、ならびにpsychostimulaにより変更することができますそのようなアンフェタミンおよび3,4- methylenedioxy- N -methylamphetamineまたは「エクスタシー」1,2として中毒の国税庁と薬。
SSRIには、気分障害の治療のために大いに重要であり、まだそれらの作用の正確な構造的基礎は十分に理解されていません。 WT SERTは、このようにSERT 5,6の3次元(3D)構造に向かって進行を妨げる、界面活性剤ミセル中で不安定です。最近、我々は洗剤の広い範囲でロバスト安定であり、活動6を結合SSRIを保持SERTの変異体を開発しました。これらの耐熱性SERT変異体は、シンチレーション近接ベースの熱安定性アッセイを用いて選択しました。ここでは、抗体とS -シタロプラムとの複合体、SERTを結合することができる高親和性抗体の生成のための手順、および耐熱性SERTの精製及び結晶化について説明します。
このプロトコルは、SERTおよび8B6遺伝子は成功してきたことを前提としていyはそれぞれ、BacMamによって7および昆虫発現ベクターにクローニングしました。抗体を生成するために、WT SERTのcDNAを残基をコードする73から616をC末端のStrep IIタグ(SERT IC)でBacMamによってベクターにクローニングしました。熱安定性の画面では、SERT残基C末端GFPで73から616まで、のStrep II、10-Hisをタグ(SERTのTC)を使用しました。個々の点突然変異は、SERT TCバックグラウンドで生成されました。結晶化プロトコルの場合、SERT-GFP融合タンパク質は、表面システインC554A、C580Aの熱安定性変異体、Y110A、I291A、およびT439Sおよび変異を有する、ツイン連鎖球菌[TrpSerHisProGlnPheGluLys(GlyGlyGlySer)2 GlyGlySerAlaTrpSerHisProGlnPheGluLys]および10-Hisをタグで使用されました、およびC622A(SERTのCC)。トロンビン切断配列(LVPRGS)もまた、N末端およびC末端の除去を可能にするために、Q76及びT618後SERTのCCに挿入しました。 8B6のFabをコードするプラスミドは、重鎖および光の両方を発現するように遺伝子操作されました二つの別個のポリヘドリンプロモーターの制御下でGP67分泌配列を有する抗体の連鎖。 8B6抗体の重鎖のC末端は、8-Hisタグでタグ付けし、トロンビン切断部位は、重鎖およびタグの間に挿入しました。
接着HEK293SのGnTIの1.トランスフェクション-熱安定性スクリーンのための細胞
S -シタロプラム2.シンチレーション近接ベースの熱安定性スクリーン
HEK293SのGnTI中のヒトセロトニントランスポーターの3式 -細胞
免疫化および結晶化のためのセロトニントランスポーターの4アフィニティ精製
予防接種のためのリポソームへのトランスポーターの5の再構成
3Dエピトープを認識する抗体6.スクリーニング
Sf9細胞における抗体フラグメントの7式
8。 Sf9細胞上清からの抗体フラグメントの精製
サイズ排除クロマトグラフィーによってトランスポーター - 抗体複合体と分離の9の形成
ドロップハンギングによりトランスポーター - 抗体複合体の結晶化10
SERTのTCのバックグラウンドで単一点突然変異体のライブラリーは、突然変異を熱安定をスクリーニングするために作成されました。個々の変異体は、標準的な変異誘発を用いて作製しました。スクリーニングプロトコルは、 図1(a)に概説されるように結晶化のため急速にアイデンティティ有用変異に一過性にトランスフェクトHEK293S細胞とシンチレーション近接ベースの熱安定性の画面を利用しています。プロットTm値結合した[3 H]シタロプラム対RTで適切な高耐熱性および発現レベルを有する構築物を明らかにタンパク質精製のために( 図1B)。三つの突然変異体(Y110A、I291A、およびT439S)は安定性の高い構築物( 図1C)を生成するために組み合わせました。熱安定性はまた、SERT-のFab複合体の結晶化に必要な短鎖の界面活性剤で安定性の増加と相関します。
バキュロウイルス-TRを用いてヒトSERTの大規模発現ansduced HEK293SのGnTIは-細胞が2週間未満取ることができ、 図2Aに示すように、ミリグラム量を生成することができます。 GFPタグSERTのCCタンパク質の使用は、SERTは便利蛍光( 図2B)による発現および精製の間続くことを可能にします。 ;安定化脂質としてCHSの存在下でC12Mでの細胞-当社の精製戦略は、1)HEK293SのGnTIからのS -シタロプラムにバインドされたSERTの可溶化を関与しました2)連鎖球菌の親和性マトリックスにSERTの結合;徹底的な洗浄によって夾雑タンパク質の3)除去;および4)を含む緩衝液デスチオビオチン( 図2C)との機能SERTの溶出。溶出したタンパク質は、FSEC( 図2D、E)によって判断されるようにクマシーブルー染色し、単分散することにより、他の検出可能なタンパク質の大部分は無料です。
同様の戦略はreconstitutioのために使用されたのStrep IIタグとSERTを精製するために取られましたnおよび免疫( 図3A、B)。プロテオリポソームへのSERTの取り込みは、SERTの血清半減期および安定性を向上させ、高親和性抗体の単離の可能性を向上させます。また、リピドA、細菌細胞壁の構成要素を含めることは、強力なアジュバント9として機能します。多重膜リポソームは、ガラス管中の乾燥した脂質混合物に緩衝液を添加することにより調製し、緩衝液中に再懸濁しました。 200 nmの細孔サイズのフィルターを通してリポソームを押し出し、単分散ユニラメラリポソーム懸濁液を生成します。リポソームは、その後洗剤で精製SERT、続いて界面活性剤で飽和されています。界面活性剤混合物:最後に、界面活性剤は、脂質の疎水性吸着樹脂を添加することによって除去されます。追加のリガンドは、抗うつ薬に結合した立体構造を認識する抗体を選択するために再構成したサンプルに追加する必要があります。プロテオリポソーム内SERTの存在はにより確認すべきですSDS-PAGEローディング色素またはC12Mとの小さなサンプルを可溶化し、SDS-PAGEおよびFSEC( 図3C、D)上で実行されています。
SERTの抗体を発現するハイブリドーマ細胞株は、3次元のエピトープを認識する高親和性結合についてスクリーニングすることができます。抗体がしっかりと均質な、秩序だったドメインの結晶パッキングを促進するための構造化領域に結合したままでなければならないように、これらの特性は、結晶化の最終的な成功に不可欠です。第1のステップでは、構造化されていない領域を認識する抗体が同定されます。 SERTを変性させ、ニトロセルロース膜上にブロット。変性SERTを結合する抗体は、西洋陽性であること、おそらく線形エピトープを認識します。 図4Aに、我々は西洋陽性とcrystallogenesisを促進する可能性が有用ではない抗体の2つの例を示しています。 図4Bでは、残りの西部陰性抗体は、100 nMのSERT-GFPとインキュベートされ、で区切らFSEC。 SERTは、以前の位置にGFP陽性ピークをシフトさせる特異的に結合する抗体。 SERT - 抗体複合体は、それらがFSECによって分析を行っナノモルの親和性で結合することができるかどうかを決定するために界面活性剤でさらに希釈することができます。コンフォメーション輸送の変化、従って、抗体中のセロトニン結果の添加は、それらが特にSSRI結合コンホメーションを認識できるかどうかを決定するために再スクリーニングすることができます。 図4Cにおいて、抗体は、エピトープ(単数または複数)に結合した状態の基板にSSRIから変化しないことを示し、セロトニンの存在下で、SERTに結合することが示されています。最後に、 図4Dに抗体の組み合わせをさらに左方向へのシフトをもたらす、異なるエピトープに結合するそれらの能力について試験します。ここ15B8または8A11抗体は8B6とは異なるエピトープを認識します。
8B6抗体は、パパイントリートメントルームを用いた予備結晶スクリーニングに基づいて、さらなる構造解析のために選択しましたテッドのFab。 8B6のFab遺伝子は、昆虫細胞発現ベクターにクローニングしました。 Fabを発現させ、懸濁液中で成長させたSf9細胞から分泌させることができます。 8B6のFabは、Hisタグの親和性( 図5A、B)およびSDS-PAGEゲル上の汚染物質を含まない現れるタンパク質を生じる陽イオン交換クロマトグラフィー( 図5C、D)でSf9細胞の上清から精製することができます。 図5Eにおいて、組み換え8B6のFabは、SERTを結合することが示され、その後の生化学的および生物物理学的実験に使用されています。
アフィニティー精製されたSERTのCCは、トロンビンと遠藤で消化およびS -シタロプラムの存在下で複合体を形成する8B6のFabと混合します。トランス-抗体複合体は、次いでC8M( 図6A)にSECにより分離し、SDS-PAGE( 図6B)で示されるように、ピーク画分SERTおよびFabの両方を含みます。 C8Mの使用は、おそらく結晶形成のために重要です短鎖洗剤は、結晶格子中の分子の間のより良いパッキングを可能にします。 FSECは、結晶化のためにプールされるべき画分を決定するために採用されている( 図6C)。単分散でないおよび/または遊離SERTまたはFabを大量に含まれている画分を合わせすべきではありません。
角柱状SERT抗体結晶をドロップ蒸気拡散( 図7A)を吊り下げすることによって、このプロトコルを使用してSの -シタロプラムの存在下で増殖させることができます。得られた結晶は3.15Å10( 図7B)の解像度にX線を回折します。
図1:シンチレーション近接ベースの熱安定性アッセイ A。 [3 H]シタロプラムの存在下での熱安定性をスクリーニングするためのプロトコールの概要B。最大バインドされた[3 (Tm)対SUP> H]シタロプラム。点線は、WTの輸送のための値を表します。 3ほとんどの熱安定性の変異体が標識されています。灰色の領域は、低い信号対雑音重量に対して、したがって不正確なTm値を結合する[3 H]シタロプラムの10%未満を有する変異体を表す。C。 WT SERT TCとトップ3の変異体のための熱安定性曲線。エラーバーは標準偏差(SD)を表す。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図2:哺乳類の異種タンパク質の発現 A の概要 。 HEK293SのGnTIでBacMamによってウイルスの生成およびSERTの発現の図式概要- 。セルB。彼K293SのGnTI - 。SERTのCC(GFP蛍光)Cを発現する細胞。連鎖球菌親和性樹脂上のSERT CCの溶出プロファイル。 100%(0 - - 5 mM)のD。グリーントレースは、デスチオビオチンの濃度、0を表します。 4のアフィニティー精製SERTのCCの分析- 15%SDS-PAGEゲルE。 GFP蛍光によって検出されたアフィニティー精製SERT CCのFSEC(励起:480nmで、発光:510 nm)を。 15 mLで溶出するピークは、SERT(#)で、18 mLを無料でGFP(*)である。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図3:SERT IC A の代表的なアフィニティー精製および再構成 。抗体の生成の概略図。 <強い> B。溶出プロフィールは、連鎖球菌の親和性樹脂上SERT ICのアフィニティー精製の280nmで観察しました。 100% -グリーントレースは0、デスチオビオチンの濃度を表す。(0から5 mM)のC。親和性の分析は、精製し4のSERT再構成- 15%SDS-PAGEゲルD。再構成後の可溶化SERTのFSEC。トリプトファン残基の蛍光はSERT(:280nmで、発光:励起335 nm)を検出するために使用された。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図4:代表SERT抗体の分析 A。ウエスタンブロットによる抗体のスクリーニング。約1μgのGFPの有無にかかわらずSERT CCのは4に適用された- 15%SDS-PAGEゲル、ニトロセルロース膜上にブロットしました。結合は、IR色素にコンジュゲートしたヤギ抗マウス抗体を用いて検出しました。 2G4および10F2は西部陽性である。B。 FSECにより100nMのGFPタグSERTと検出への抗体の結合は、GFP蛍光を用いて検出する。C。 1 mMのセロトニン。Dの存在下で、100nMのGFPタグSERTに選択されたFabの結合。 SERT-8B6のFabに8A11または15B8のFabの結合。 18 mLで溶出する小さなピークは無料GFPである。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図5:Sf9細胞から8B6のFabの代表的な精製A。。 Hisタグアフィニティchromatograpによって8B6のFabの精製の280 nmで観察された溶出プロファイル HY。 50%(0 - - 250 mM)のB。グリーンのトレースは、イミダゾールの濃度、0を表します。 Hisタグアフィニティ精製後の非還元および還元SDS-PAGEゲル。 50kDaの近くで実行されるタンパク質は、非還元のFab(#)とkDaではのFab(*)。Cを減少させる25でマイナーな種です。溶出プロフィールは、直線塩化ナトリウム勾配下で溶出する単一の対称ピークを表示する陽イオン交換によって8B6のFabの精製の280nmで観察しました。 100%。(0 - - 500 mM)のDグリーントレースは、NaClの濃度、0を表します。陽イオン交換による精製後、12.5%SDS-PAGEゲル上で8B6のFabの分析。E。 GFPの蛍光を用いて検出し、10 nmのGFPタグSERTに8B6のFabの結合は。 この図の拡大版をご覧になるにはこちらをクリックしてください。
電子6 "SRC =" /ファイル/ ftp_upload / 54792 / 54792fig6.jpg "/>
図6:Sの -シタロプラムの存在下でのSERT-8B6複合体の代表的ゲルろ過クロマトグラフィーA。。精製されたSERT-8B6複合体のゲル濾過溶出プロファイル。 11.5 mLで溶出する主ピークは、SERT-8B6複合体です。 15のピーク- 。17 mLのGFPおよびFab Bが含まれています 。 15%SDS-PAGEゲル - 4で精製SERT-8B6複合体の解析。 SERTおよびFabの重鎖及び軽鎖の位置はダッシュ。Cで示しています。サイズ分離分画のFSEC。 SERT-8B6複合体は、トリプトファン蛍光を用いて検出しました。フラクション17は、Fabとの複合体なかったSERTより多くの量が含まれています。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図7:S -シタロプラム A にバインドされたSERT-8B6複合体の結晶化 。成長の2週間後SERT-8B6複合体の直方体状結晶の光学顕微鏡。スケールバーは200μmである。Bに等しいです。 SERT-8B6結晶は3.15ÅにX線を回折します。ブルーリングは3.15オングストロームを表します。 この図の拡大版をご覧になるにはこちらをクリックしてください。
表 1:Sの -シタロプラム にバインドされたSERT-8B6コンプレックスのための結晶化画面 この表をダウンロードするにはこちらをクリックしてください。
生物物理学的手法による膜タンパク質構造の決意は、多くの医学的に重要なトランスポーター、受容体、およびチャネル11のための困難な仕事で残っています。ここでは、S -シタロプラムに結合したヒトセロトニントランスポーターの構造決意のために開発され、詳細な専門知識を共有しています。我々は、これらの方法は、他のコンフォメーションの状態だけでなく、他の困難な膜タンパク質の構造にSERTの構造を決定するのに有用であろうことが予想されます。さらに、ここに記載の生化学的技術も、洗剤中の精製SERTおよび近天然の脂質環境の機能を研究するために使用することができます。
SERTの結晶化には、いくつかのツールや技術の開発時にヒンジ結合しました。まず、トランスポーターの熱安定性の改善は、膜6からのトランスポーターの抽出後の種々の界面活性剤ミセルに行儀たSERT変異体を生産しました。第二に、使用精製、結晶化、さらに改善された安定性全体に高親和性リガンドのS -シタロプラムのコンフォメーション不均一性を減少させました。第三に、免疫化および結晶化の両方を容易にする2週間の短期間におけるSERTの大量の産生のために許可されたBacMamによって発現系7の開発。最後に、結晶にSERT - 抗体複合体の秩序だったパッキングを促進する8B6抗体の発見のために許可された3Dエピトープを認識する高親和性抗体を選択するための戦略の開発。
重要なステップと試薬の数だけでなく、多くの場合、プロトコル全体で発生する一般的な問題があります。まず、高力価SERT P2ウイルスの発生が問題となり得ます。このプロトコールに記載されるようにP2ウイルスを生成するために、P1ウイルスの低濃度を追加すると、通常、この問題を軽減、及びP2のウイルス力価が低い場合に、P3ウイルスはusinすることができます0.0001のMOIでグラムウイルス。 1×10 8ウイルス粒子未満の力価を有するウイルスは、/ mLを使用すべきではないと、ほとんどの場合、低タンパク質の収量になります。発現のために、HEK293S GnTIを-彼らはNを欠いているので、細胞が選ばれたが、私の活動を-acetylglucosaminyltransferaseので、複雑なNの -glycansを合成することはできません、代わりにのみ高マンノースN -glycansを生成します。遠藤切断は、Nは、アスパラギンに接続されたN -acetylglucosamineを残して、細胞外ループ2(EL2)内の2つのサイトで高マンノースグリカンのグリコシル化を-結合しました。 Nの消化は、糖が結晶化のための可能性が高いことが重要であるEL2の表面エントロピーを減少させる-結合しました。抗体の生成のために、SERT ICは、免疫のために使用されるべきです。 GFPは12高度に免疫原性であり、完全にSECによって除去することが困難であるため、抗体を生成するために融合タグとして使用されるべきではありません。 SERTの柔軟なN末端およびC末端にもありませんでしたこれらの領域に対する抗体を回避するために、構築物に含まれます。マウスは、再構成された30μgのタンパク質で免疫することができます。 図13は、説明されているように、抗体の高い血清濃度が検出され、ハイブリドーマ細胞を産生することができるまで、マウスを免疫続けます。熱安定構築物は、通常、免疫のための最良の選択です。トランスポーターは行儀で、精製後の生物学的活性を保持している場合、これは、多くの場合、抗体を惹起するのに十分です。 8B6抗体は、WT SERTに対して提起されました。結晶化のために、FSECによって判断されるように単分散複合体を含有するSECからのみピーク画分を合わせ、濃縮する必要があります。 SERT-8B6の結晶は、条件の狭い範囲で成長し、特にSERTの結晶成長に関連する問題をトラブルシューティングするために取るべき手順がいくつかあります。このバッファは、結晶成長をサポートしていないため、HClで調整トリス塩基は、リザーバー溶液中で使用すべきではありません。従ってCRIあります代わりにNaOHで調整トリスを使用するtical。結晶が成長しないか、多くの小さな結晶が認められた場合、PEG 400濃度が少しでも増加または減少が賢明でしょうので、もしSERTの結晶は、PEG 400の狭い濃度範囲で成長します。また、添加剤6-アミノヘキサン酸は、核形成を改善するために最適化された画面で使用しました。タンパク質のドロップ率:よく溶液はまた、結晶成長のための係数を決定する鍵です。一般的に、より大きな3次元結晶の成長をサポートする1:2に近いドロップ比で、推奨される1:2から1.5の比率をドロップします。最後に、ロープロファイル24ウェルプレートの使用は、おそらく、蒸気拡散速度の変更に、また、結晶成長に向けて非常に重要です。
SPA法に代わるアプローチは、アッセイ5を結合フィルタを使用してコカイン結合コンホメーションのラットセロトニントランスポーターを安定化変異体をスクリーニングするために開発されました。これとは対照的に、SPAのBAsedのアッセイは、リガンドに結合したままSERTの割合の決意によって、次のシーケンシャル加熱工程を可能にします。したがって、これは、サンプル数が少ないから融解温度を迅速に決意することを可能にします。 SPA法は、放射性標識された高親和性リガンドの可用性に依存しないリガンドがマイクロモル以下の親和性で結合する知られていないならば、別のアプローチが必要になります。多くの他の方法は、一般的に、蛍光色素および熱量14の結合のようなタンパク質の安定性を測定するために使用されるが、低スループットであり、直接的に機能を測定または大量のタンパク質を必要とすることができませんされています。 SPA法を用いることができない場合、代替の一高スループットアプローチは、サンプルは、残りのトランスポーターの画分の分離に続いて加熱さFSECベースの熱安定性アッセイ15(FSEC-TS)、です。 FSEC-TSは、クロマトグラフィー挙動およびオリゴマー状態にアクセスするための有用なアプローチであるとpでありますSPA法と一緒に使用することができますowerful補完的なツール。
様々な一般的なタンパク質発現系の比較もSERT発現の16のための哺乳動物細胞を使用することを好むことが分かったと当然これは、おそらく、哺乳動物由来の多くのタンパク質の場合です。我々は発現のために使用している方法は、SERTに合わせたが、そう容易に適合しているされています。高レベルの発現に有利な条件を慎重式、温度、ウイルス濃度、水酸化ナトリウム、酪酸などのヒストンデアセチラーゼ阻害剤の存在の時間を変化させることによって同定されるべきです。
私たちは、一般的に高親和性結合リガンドを保持するために再構成の前に一緒にCHSと、このようなC12Mなどの軽度の長鎖界面活性剤中でアフィニティー精製を好みます。疎水性の吸収を使用して再構成は、我々はいくつかの他の輸送体および受容体のために有効であることが判明している穏やかな手法です。この場合抗原は、このような界面活性剤で十分に安定である設け、透析、希釈、またはSECによって高い臨界ミセル濃度を有する界面活性剤の除去は、17を用いることができ、成功しません。もし適切な抗体が検出されなかった例では、我々はほとんど常に問題が抗原の機能または変性の損失によるものであり、そのような場合には、我々が正常タンパク質生化学に特別な注意を払って新しい予防接種を行って見つけます。最後に、高親和性で結合するリガンドおよび抗体は、合理的に計画された結晶化実験のための基礎を形成する必要があり、熱安定性変異体を利用することによって、人は、異なる界面活性剤の性質を変化させることによって、条件の広い範囲をスクリーニングすることができます。さらに、脂質中間相18中の結晶化またはバイセル19を使用して、常にミセル中の結晶化の代替として考慮されるべきです。
これらの原理および方法は、いくつかのMODIFIで使用することができ発現し、そして他の発現宿主から精製し、そして高親和性薬物の標的の構造決意するために特に有用であろうことが困難である多くの他の膜貫通タンパク質の陽。
The authors have nothing to disclose.
We thank D. Cawley for generating monoclonal antibodies. We thank A. Penmatsa and K. Wang for sharing ideas and expertise developed from the dopamine transporter. L. Vaskalis for assistance with figures, H. Owen for help with manuscript preparation and other Gouaux laboratory members for helpful discussions. J.A.C. has support from a Banting postdoctoral fellowship from the Canadian Institutes of Health Research. E.M.G. is supported by the National Science Foundation Graduate Research Fellowship. We are particularly grateful to Bernie and Jennifer LaCroute for their generous support, as well as for funding from the NIH (5R37MH070039). E.G. is an investigator of the Howard Hughes Medical Institute.
Name | Company | Catalog Number | Comments |
DH10Bac | Invitrogen | 10361-012 | |
Kanamycin | Fisher | BP906-5 | |
Gentamicin | Fisher | BP918-1 | |
Tetracycline | Sigma | T-7660 | |
Bluo-gal | Invitrogen | 15519-028 | 5-Bromo-3-indolyl β-D-galactopyranoside |
Isopropyl beta-D-1-thiogalactopyranoside | Anatrace | I1003 | IPTG |
Miniprep kit | Qiagen | 27106 | |
Cellfectin II | Invitrogen | 10362-100 | Sf9 transfection reagent |
Sf9 | ATCC | CRL-1711 | |
Sf-900 III SFM media | Life Technologies | 12658-027 | |
HEK-293S GnTI- | ATCC | CRL-3022 | |
Freestyle 293 media | Life Technologies | 12338-018 | 293 expression media |
Fetal Bovine Serum (FBS) | Life Technologies | 0984018DJ | |
Sodium butyrate | Sigma | 303410 | |
S-citalopram | Sigma | E4786 | Anagrade |
n-Dodecyl-beta-D-Maltopyranoside | Anatrace | D310 | |
Cholesteryl hemmisuccinate | Sigma | C6013 | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine | Avanti Polar Lipids | 850457P | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine | Avanti Polar Lipids | 850757P | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol | Avanti Polar Lipids | 840457P | |
Leupeptin | Sigma | L2884 | |
Pepstatin A | Sigma | P5318 | |
Aprotinin | Sigma | A1153 | |
PMSF | Sigma | P7626 | |
Desthiobiotin | Iba Life Sciences | 2-1000-05 | |
Asolectin | Sigma | 11145 | |
Cholesterol | Sigma | C-8667 | |
Lipid A | Sigma | L5399 | |
Brain polar lipid | Avanti Polar Lipids | 141101C | |
Biobeads | Biorad | 152-3920 | Hydrophobic absorption resin |
Goat anti-mouse IRDye 680RD | Odyssey | 926-68070 | Used as secondary antibody for western blotting |
Lauryl maltose neopentyl glycol | Anatrace | NG310 | Anagrade |
Serotonin | Sigma | H9523 | |
pFastBac 8B6 | Available from authors | ||
pEG Bacmam SERT Strep II | SERTIC, Available from authors | ||
pEG Bacmam SERT GFP twin Strep His | SERTTC, Available from authors | ||
pEG Bacmam SERT ts3 GFP twin Strep His | SERTCC, Available from authors | ||
Imidazole | Sigma | 56749 | |
n-Octyl β-D-maltoside | Anatrace | O310 | Anagrade |
Thrombin | Haematologic Technologies | HCT-0020 | |
EndoH | New England Biolabs | P0702 | |
Trizma-HCl | Sigma | T5941 | Tris is used for preparation of crystallization reservoirs |
PEG 400 | Sigma | 91893 | |
6-aminohexanoic acid | Sigma | 7260 | |
Trypsin-EDTA | Fisher | MT25052CV | |
Isoplate-96 TC | PerkinElmer | 6005070 | |
PolyJet | SignaGen | SL100688 | Polymer transfection reagent for mamalian cells |
Copper HIS-Tag YSI SPA Beads | PerkinElmer | RPNQ0096 | His-tag affinity SPA beads |
Citalopram, [N-Methyl-3H] | PerkinElmer | NET1039250UC | |
ThermoMixer C | Eppendorf | 5382000023 | heating block for thermostability assay |
ThermoTop | Eppendorf | 5308000003 | |
SmartBlock PCR 96, thermoblock for PCR plates | Eppendorf | 5306000006 | |
0.2 µm syringe filter | Olympus Plastics | 25-243 | |
1 L filter system | Corning | 430517 | |
2 L flat bottom tissue culture flask | Genemate | F-5909-2000 | |
2 L baffled tissue culture flask | Genemate | F-5909-2000B | |
CO2 incubator | Thermo Scientific | 3950 | |
Forma Orbital Shaker | Thermo Scientific | 416 | |
Strep-Tactin resin | Iba Life Sciences | 2-1208-025 | Strep affinity resin |
Extruder | Northern Lipids | ||
Li-Cor imaging system | Odyssey | western blot imaging system | |
XK16 column | GE Healthcare | 28-9889-37 | column used for Strep-Tactin and Talon purificaiton |
100 kDa MWCO protein concentrator | Millipore | UFC910096 | |
30 kDa MWCO protein concentrator | Millipore | UFC903024 | |
Äkta FPLC | GE Healthcare | UPC-900 | |
HPLC | Shimadzu | 51476 | |
Superose 6 (10/300) column | GE Healthcare | 17-5172-01 | Used for FSEC |
Tangential flow apparatus | Pall Filtron | ||
0.2 µm filter tangential flow cell | Pall Filtron | PSM20C11 | |
30 kDa MWCO tangential flow concentrator | Pall Filtron | OS030T12 | |
Talon resin | Clonetech | 635504 | His-tag affinity resin used for Fab purification |
1 mL HiTrap SP column | GE Healthcare | 17115101 | Cation exchanger used for Fab purification |
Superdex 200 10/300 GL column | GE Healthcare | 17-5175-01 | Used for SEC separation of SERT-8B6 |
24-well VDXm plate | Hampton Research | HR3-306 | |
18 mm coverslips | Hampton Research | HR3-239 | |
Virocyt virus counter | Virocyt | 2100 | |
MicroBeta Trilux | PerkinElmer | 1450 | 96-well scintillation counter |
HiTrap SP column | GE Healthcare | 17115101 | |
Sertraline | Sigma | S6319 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved