JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

相同組換えにより生成された遺伝子欠失突然変異体は、遺伝子機能研究のゴールドスタンダードである。削除構築物の迅速な生成のためのOSCAR(アグロバクテリウム - 組換え準備プラスミドのワンステップ構築)法が記載されている。 アグロバクテリウム媒介真菌形質転換が続く。最後に、真菌形質転換体における遺伝子欠失のPCRに基づく確認方法を提示する。

要約

残りのゲノムを変えずに目的の遺伝子を正確に欠失させることは、生物における特定の遺伝子の機能を決定するための理想的な産物を提供する。このプロトコルでは、正確で迅速な欠失プラスミド構築のOSCAR法が記載されている。 OSCARは、目的の遺伝子の精製されたPCR増幅5 'および3'側面および2つのプラスミド、pA-Hyg OSCAR(マーカーベクター)およびpOSCAR(組立体)を含む単一のリコンビナーゼ反応が行われるクローニングシステムに依存するベクター)。正しく組み立てられた欠失ベクターの確認は、制限消化マッピングとそれに続く配列決定によって行われる。 次いで、アグロバクテリウム・ツメファシエンスを用いて、欠損構築物の真菌胞子への導入を仲介する(ATMTと呼ばれる)。最後に、相同組換えまたは非相同組換えによって組み込まれた欠失構築物が遺伝子欠失を示しているかどうかを決定するためのPCRアッセイが記載されている異所性の統合である。このアプローチは、 Verticillium dahliaeおよび他の種の中のFusarium v​​erticillioidesにおける多数の遺伝子の欠失に首尾よく用いられている。

概要

遺伝的切開は、個々の遺伝子または遺伝子の組み合わせの機能的重要性を決定するための強力な方法論である。特定の遺伝子の役割を理解するための標準的なアプローチは、他のどの遺伝子でも改変されていない単一の遺伝子変異体の産生である。最も強力で潜在的に混乱を招くアプローチは、他の遺伝子機能を損なうことなく、関心対象のオープンリーディングフレーム(GOI ORF)の遺伝子を完全かつ正確に欠失させることである。

欠失プラスミド生成のための標準ライゲーションアプローチは複数のステップを必要とするので、OSCAR1の合理的な方がより迅速なインビトロアプローチを生成することであった。 図1は、OSCARアプローチにおけるアセンブリプロセスを示しています。本明細書に記載されている方法は、単一のマルチパート反応における個々の遺伝子欠失ベクターの迅速な構築と、その後のアグロバクテリウム・ツメファシエンス媒介トランスフェクションrmation(ATMT)。 OSCARは非常に迅速であり、酵母2におけるギブソンアセンブリの使用などの他の戦略とよく比較される。 OSCAR法は、いくつかの胞子嚢腫種(Ascomycota species ofcungi)と共に首尾よく使用されている。これらの種には以下のものが含まれる: Fusarium v​​erticillioides (未発表)、 Verticillium dahliae 3 、Setophaeria turcica 4 、Metarhizium robertsii 5 、Fusarium oxysporum f。 sp。 vasinfectum 6 、Pestalotiopsis microspora 7 、Colletotrichum higginsianum 8 およびDothistroma septosporum 9およびSarocladium zeae (未公開)が含まれる

このプロトコールは、プライマー設計、フランクPCR増幅、OSCAR BP反応、欠失構築物構造確認、形質転換を含む方法のための段階的な指示を提供するアグロバクテリウムのアグロバクテリウムイオンをコンストラクトと接触させ、続いて欠損構築物を真菌細胞にATMTベースで移し、最後に真菌の欠失突然変異体を異所的に組み込まれた欠失構築物と区別する。

プロトコル

1.遺伝子側面のPCR増幅のためのプライマー設計

  1. オープンリーディングフレーム(ORF)を含む目的遺伝子(GOI)のゲノム領域と、FungiDBまたは他のゲノムデータリソースから両側に遺伝子を隣接する少なくとも2kbをワードプロセッシングファイルにダウンロードする。
  2. 削除するORFを強調表示し、コドンの開始と停止をラベルします。
  3. ダウンロードしたシーケンス内の隣接するORFを特定し強調表示します。
  4. GOI ORFの2kb 5 '末端とプライマー設計ツール(材料リストを参照)を使用して、PCRプライマー対O1およびO2を設計して、1kbの最小サイズ産物を生成する。隣接するORFには影響しないように注意してください。
    1. 2kbの5 '側面を「Sequence Entry」ウィンドウに貼り付けます。 [Show Custom Parameters]ボックスをクリックします。プライマーTM 58(min)、60(opt)および62(max)のカスタムデザインパラメータを入力します。プライマーGC40(min)、50(opt)および60(max)。プライマーサイズ22(分)、24(オプト)および26(最大); Ampliconサイズ1250(分)、1500(オプト)および2000(最大)。
    2. ORFに最も近いリバースプライマー(O2)を配置する結果を選択します。アッセイのスクリーンショットをキャプチャし、プライマー配列をコピーしてワードプロセシング文書に貼り付ける。
    3. プライマーO3およびO4を生成するために3 '側部のためのプロセスを繰り返すが、今回は標的ORFに最も近いフォワードプライマー(O3)を配置する結果を選択する。
  5. プライマー1〜4の5 '末端に適切な付加部位を付加する( 表1参照)。
  6. また、以下のセクション4の削除確認に使用するORF特異的プライマーを設計し、発注する。パラメータは、必要に応じてAmplicon Size 500(min)、750(opt)、1000(max)のORFの長さを調整する以外は、手順1.4.1と同じにする必要があります。最後に、相同組換え体の確認のために、染色体内の側面のすぐ外側にあるプライマーを5 'および3'に生成する。これらの「アウト」プライマーは、hygR(210)およびhygF(850)と比較した( 図2 )。
  7. プライマーを注文する。

2. OSCARコンストラクトの生産

  1. 高忠実度のTaqを使用して、1つの反応でプライマー(100μM)O1およびO2を使用し、第2の反応でプライマーO3およびO4を使用して、5 'および3'側面にそれぞれ1つずつ、2つの反応を実施する。反応混合物は、29.5μLの滅菌蒸留水(SDW)、5μLの10×LA PCR緩衝液、8μLの2.5mM dNTP混合物、5μLの25mM MgCl 2、1μLの鋳型(50ng /μL)忠実度Taq 、0.5μLのプライマーO1および0.5μLのプライマーO2を5 'フランク(または0.5μLのプライマーO3および0.5μLのプライマーを3'側面に使用)使用条件:94℃で1分間、次いで30サイクル30秒間、94℃で30秒間、60℃で30秒間、72℃で2分間、最後に72℃で5分間、その後、10℃で無期限に保持する。
  2. 0.8%を実行アガロース1×TAE(40mM TrisアセテートpH8.3,1mM EDTA)ゲル電気泳動を標準ミニゲル装置で約125Vhで行い、生成物のサイズおよび相対濃度を決定する。製造者の指示に従って非エチジウム染色でゲルをポストする。 UV照明で視覚化する。
  3. 5 'および3'フランク産物がほぼ均一濃度である場合、それらを組み合わせて、アフィニティーカラムキット(またはPEG沈殿物90μLの結合PCR産物、240μLのTE緩衝液pH7.5,160μLの30%ポリエチレングリコールPEG8000 30mM MgCl 2 )PCR産物を製造業者のプロトコールに従って共精製する。それらが等濃度でなければ、低濃度生成物の全てを、より高い収率反応からの生成物の推定量と組み合わせる。
  4. 分光光度計を使用して精製DNA濃度を測定する。
  5. 以下のものを混合してBP反応を実施してください:1μLの60 ng /μLポスカール、2μL60 ng /μLpA-Hyg-OSCAR、1μLの60ng /μLの組合わせた側面、1μLのクロナーゼ。 25℃で16時間インキュベートする。 0.5μLのプロテイナーゼKを加えて反応を停止させ、37℃で10分間インキュベートする。
  6. 高能力を変えるE。 コリ細胞。商業的に入手可能なコンピテント細胞および自家製DH5αCaCl2コンピテント細胞の両方を、製造者の説明書に記載されているようにレシピエントとして首尾よく使用した。 100μg/ mLスペクチノマイシン(Spec)を含有する低ナトリウム(0.5g / L NaCl)LB上のプレート。
  7. 上で生成したコロニーのDNAミニプレップ10を実行することによって正しい構築物を同定する。 Hin dIIIおよびKpn Iで以下のように二重消化を行います:ピペット5μLDNA、各酵素2U、SDWを含む適切な10×バッファー2μL、総容量20μL。これにより、ベクター( 7kb)から挿入物(約1.5kbの遺伝子側面を有する約4.5kb)が放出され、予測可能なバンドサイズを与えることができる側面。
  8. 配列11は 、適切なバンディングパターンを示すクローンを選択する。

真菌のアグロバクテリウム・ ツメファシエンス媒介形質転換(ATMT)

  1. OSCAR欠失構築物12を有するアグロバクテリウム・ツメファシエンス株AGL1を形質転換する。
  2. GOI OSCAR欠失プラスミドを含むAGL1で真菌を形質転換する。これを実行するには、以下の手順を実行します。
    1. 2×10 6胞子/ mLの滅菌水で真菌胞子懸濁液を調製する。血球計または自動セルカウンターで胞子を定量する。これを500 mLの1.5 mLマイクロ遠心チューブに入れます。このセットアップは、4つの変換プレート用です。
    2. 2〜3日齢のLB-Spec 100培地からAGL1を含む欠失プラスミドの容易に目に見えるゴブ(ループ直径の約20%を覆うべきである)を加えるために青色の無菌使い捨てループを使用する(Materials List for composition)プレートを含み、胞子懸濁液に混合する。細菌細胞がよく分散するまでボルテックスする( 5分間の中速)。
    3. 100μLの分生子 - アグロ懸濁液を、共培養培地12を含む4つの6cmペトリ皿のそれぞれに置かれたセルロースメンブランフィルターの中心にピペットで移す。
    4. 懸濁液を滅菌ガラスビーズ(約4)で広げて、膜フィルターの全表面を覆う。あるいは、伝統的なスプレッダーツールを使用してサスペンションを広げます。膜フィルターをフード内で約10分間乾燥させ、パラフィンフィルムで包みます。手順3.2.2と3.2.3を繰り返して、複数の変換を設定します。
    5. プレートを室温で2日間インキュベートし、逆さにする。
    6. ハイグロマイシンB(Hyg)150μg/ mL、200mMセフォタキシムおよび100μg/ mLを含有する6cm アスペルギルス選択培地12プレートに膜フィルターを移す。モキサラクタム。 Hyg耐性コロニーを単離する前に、室温で5〜7日間インキュベートする。
    7. 滅菌したつまようじを用いて、150μg/ mL Hyg、100μg/ mLカナマイシンを含む6 cm Potato Dextrose Agar(PDA)プレートに推定形質転換体を移す。

4. PCRによる欠失変異体の同定

  1. 熱分解により形質転換からPCRのためのDNAを抽出する13
    1. 形質転換体がステップ3.2.7のPDA上にコロニーを形成したら、滅菌した爪楊枝を用いて少量(2mm×2mm)の菌糸または酵母細胞をコロニーから100μLの溶解溶液(50mMリン酸ナトリウム、pH 7.4mM、1mM EDTA、5%グリセロール)を微量遠心チューブ中に添加した。
    2. 混合物を85〜90℃で20〜30分間インキュベートする。ステップ4.2で使用するまで、ゲノムDNAを含む粗抽出物を-20℃で保存する。
  2. 形質転換体あたり4回のPCR反応を行い、それぞれをd選択マーカー(この場合、ハイグロマイシンホスホトランスフェラーゼ)のためのものとGOI ORFのためのものとのそれぞれの5 'および3'側面の相同組換えを示す。
    注:これらの反応には、安価な低忠実度Taqを使用します。反応条件は上記の2.1に記載の通りであり、SDW20μL、10×Taq緩衝液2.5μL、dNTPS(10mM)0.5μL、自家製Taq14,0.5μL、プライマーA(100μM)0.5μL、プライマーB(100μM )0.5μL、テンプレート0.5μL。より低い濃度のプライマーストック(10μM)も同様に良好に使用することができる。
  3. PCR産物のアガロースゲル( 例えば、 0.8%)を流す。欠損突然変異体は、Hygバンドを産生するが、ORF産物は産生しない。異所的組込み体は両方のバンドを示す。野生型では、ORFバンドのみが生成されます。
  4. 将来の使用のために、欠失突然変異体(および異所形質転換体または対照用の2つ)を永久保存する。
    注:15%グリセロールを使用して我々の株は-80℃で長期間耐えられました。

結果

OSCAR法は、単一の反応で、選択マーカーカセットを取り囲む、欠失される標的遺伝子の側面を含むプラスミドを生成する。 OSCARを使用した削除構造の作成は非常に効率的です。しかしながら、この系は、3つの断片のすべてではなく一部を含む部分的な構築物(2つの遺伝子の側面および選択マーカー)を産生することができる。一般に、 大腸菌形質転換体の大?...

ディスカッション

アグロバクテリウムのワンステップ構築 - 絶滅のおそれのあるプラスミド(OSCAR)は、漸増する麹菌(Ascomycota fungi)の使用に成功しました。この方法はまた、 アグロバクテリウム媒介形質転換および相同組換えが可能であると仮定して、担子菌および他の真菌門由来の種(選択マーカー遺伝子を駆動する適切なプロモーターを有する)にも容易に適用可能であるべきである。抗...

開示事項

著者は何も開示することはない。

謝辞

著者らは、 Fusarium v​​erticillioiodesの OSCAR突然変異体を作製するために、Anjellica Miller、Athar Naseer、Xiu Lin、Katelyn Woodburry、Chelsea Patterson、Kathleen Robertson、Krystina Bradley、Ashton Rogers、Alexis McKensie、Manny Hernandez 、Ashli​​ Crepsac、Jeff Delong、Christian King、Gi Jeong、Maria Belding、Christy Burre、Daniel O'Meara、Lauren(Victoria)Cook、Jake Goodman、Sampriti De、Oge Okoye、Alyssa Beckstead、Garrett Hibbs、Nick Goldstein、Caroline Twum 、Chris Benson、Louis Stokes、Hannah Itell、Jane Hulse、Jasim Mohammed、James Loggins、Kelli Russell、Gre'Nisha Jones、Kristin Sheaffer、Mariam Hammady、Ava Wilson、カトリーナ・バズモア、トニー・ハーパー、カリン・マクギー、モハメド・モミン、リマ・モミンThi Ngoc Le、Angel Phamなどがあります。

資料

NameCompanyCatalog NumberComments
FungiDBDatabase/ http://fungidb.org/fungidb/
IDT PrimerQuestIDTPrimer design online software/ http://www.idtdna.com/Primerquest/Home/Index
Microsoft WordSequence file manipulation
Low Na LB Spec 100 mediumE. coli transformant selection, composition: 1% tryptone, 0.05% NaCl, 0.5% yeast extract, 1.5% agar if for solid medium
Co-cultivation mediumATMT transformation induction (Reference 12)
Aspergillus minimal medium with HygromycinFungal transformant selection
PDA mediumAcumedia7149ASingle spore slant tubes
PDA-Hyg-Kan mediumFungal ransformant isolation, PDA containing 150 μg/mL hygromycin B and 100 μg/mL Kanamycin
Glass beadsGenlantisC400100Plate spreading
Nitrocellulose filters (47 mm)Fisher09-719-555Co-culturing for ATMT
Various centifuge tubesmultiple preps
Petri plates (various)Culturing of bacteria and Fungi
pA-Hyg OSCARAddgene29640Selectable marker vector
pOSCARAddgene29639Assembly vector
DH5α One Shot Competent E. coli cellsLife Technologies 12297-016BP reaction transformation
ccdB survival E. coli cellsLife Technologies A10460Maintenance of pOSCAR
Wooden transfer sticksColony streaking
ToothpicksColony picking
MicrocentrifugePelleting Bacteria, etc.
Preparative centrifugeFungal spore collection
Dissecting microscopeSingle spore isolation
Automated Cell CounterSpore suspension calculation
Compound microscopeHemocytometer cell counting
QIAquick PCR Purification Kit Qiagen28104PCR gene flank produict purification
TaKaRa LA Taq Takara Bio USARR002AHi Fidelity taq polymerase for OSCAR flank generation
Hygromycin BInvivoGenant-hg-5
SpectinomycinSigma22189-32-8
CefotaximeTCI AmericaC2224
Kanamycin11815032
MoxalactamSigma-Aldrich43963
GelRed Phenix Research ProductsRGB-4103Post staining agarose gels
Qiagen QIAquick PCR Purification Kit (Cat. No. 28104) 
(OneShot_ Mach1TM T1R or One Shot_ OmniMAX™ 2 T1R from Invitrogen) Thermo Fisher ScientificC862003
Gateway BP Clonase II Enzyme mixThermo Fisher Scientific11789020Used to assemble deletion construct in pOSAR

参考文献

  1. Paz, Z., García-Pedrajas, M. D., Andrews, D. L., Klosterman, S. J., Baeza-Montañez, L., Gold, S. E. One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol. 48 (7), 677-684 (2011).
  2. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., Smith, H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 6 (5), 343-345 (2009).
  3. Klosterman, S. J., et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 7 (7), (2011).
  4. Xue, C., Wu, D., Condon, B. J., Bi, Q., Wang, W., Turgeon, B. G. Efficient gene knockout in the maize pathogen Setosphaeria turcica using Agrobacterium tumefaciens-mediated transformation. Phytopathology. 103 (6), 641-647 (2013).
  5. Xu, C., et al. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PloS One. 9 (9), (2014).
  6. Crutcher, F. K., Liu, J., Puckhaber, L. S., Stipanovic, R. D., Bell, A. A., Nichols, R. L. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum. Microbiology. 161, 875-883 (2015).
  7. Yu, X., Wang, Y., Pan, J., Wei, D., Zhu, X. High frequency of homologous gene disruption by single-stranded DNA in the taxol-producing fungus Pestalotiopsis microspora. Ann Microbiol. 65 (4), 2151-2160 (2015).
  8. Korn, M., Schmidpeter, J., Dahl, M., Müller, S., Voll, L. M., Koch, C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PloS One. 10 (5), e0125960 (2015).
  9. Chettri, P. . Regulation of dothistromin toxin biosynthesis by the pine needle pathogen Dothistroma septosporum: a thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics at Massey University, Manawatu, New Zealand . , (2014).
  10. Chen Zhou, ., Yujun Yang, ., Jong, A. Y. Mini-prep in ten minutes. Biotechniques. 8 (2), 172 (1990).
  11. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. P Natl Acad SciUSA. 74 (12), 5463-5467 (1977).
  12. Khang, C. H., Park, S. Y., Rho, H. S., Lee, Y. H., Kang, S., Wang, K. a. n. Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum). Agrobacterium Protocols. 2, 403-420 (2007).
  13. Zhang, Y. J., Zhang, S., Liu, X. Z., Wang Wen, H. A., M, A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol. 51 (1), 114-118 (2010).
  14. Pluthero, F. G. Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res. 21 (20), 4850-4851 (1993).
  15. McCluskey, K. Boosting Research and Industry by Providing Extensive Resources for Fungal Research. Gene Expression Systems in Fungi: Advancements and Applications. , 361-384 (2016).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

124 ATMT

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved