Method Article
合成高分子の質量分析法 (MALDI-TOF MS) 特性は試料調製、スペクトルの取得及びデータ解析の最適化など記載されているフライトのマトリックス支援レーザー脱離イオン化時間のためのプロトコル。
合成ホモポリマーの評価に用いることができる多くのテクニックがありますが、いくつか提供マトリックス支援レーザー脱離イオン化時間の飛行質量分析法 (MALDI-TOF MS) として末端基分析のための情報として役に立つ。このチュートリアルではサンプル調製、スペクトルの買収の最適化の方法とサンプル準備中 MALDI-TOF さん重要なパラメーターを使用して合成ポリマーのデータ分析、マトリックスの選択が含ま適切なカチオン塩とマトリックス、陽イオン、および試料の相対比率をチューニングの id。アクイジション ・ パラメーターは、モードなど (線形または反射板)、分極 (正または負)、加速電圧と遅延時間、また重要。化学合成ポリマーとデータ集録パラメーターとサンプル作製条件の最適化に関連するいくつかの知識を与え、スペクトルを明確な有効にするのに十分な分解能と質量精度が得られなければなりません。ほとんどホモポリマー (10,000 以下の大衆) リピート ユニットに加えての末端基の定量質量及び全体の分子量分布。ポリマーの限られたセットで示される、これらの一般的な技法が合成高分子質量の分布を決定するための非常に広範囲に適用できる最後集団意思決定のみと狭いカオリン ホモポリマー可能ですが。
生活向上の定量的機能性末端基とポリマーの精密重合技術がますます利用できる1。アジ化物アルキンおよびチオレンのクリック化学の並行開発が高分子ハイブリッド材料2,3,4 の範囲へのアクセスを提供する、他の鎖のほぼ定量的なカップリングを有効に.ただし、開始材料とこれらの高分子の共役反応物の両方の特徴を精密な分析技術が必要です。マトリックス支援レーザー脱離イオン化時間の飛行質量分析装置 (MALDI-TOF MS) は最小限の 1 回の充電状態で高分子イオンを生成できるため、高分子を特徴付けるため貴重なソフト イオン化手法断片化5,6。MALDI-TOF MS 高分子質量分布内で個々 の n mers の解像度と質量スペクトルを提供できるため高分子分析の他の従来の方法と比べて大きな利点があります。結果として、このような質量スペクトルを平均分子量に関する正確な情報を提供、単位質量と分子量カオリン7チェーン転送8 などの競合の重合機構を解明することができます順番を繰り返します.しかし、MALDI-TOF MS は特に高分子終わりグループ9,10、終了グループ変更10,11を確認する使用できる情報を提供するのに強力な他変換12高分子環化反応11,13など。同様に重要な比較的少量試料 (サブ マイクログラム) に必要な質量分析分析によりこの手法が特性評価に有用なだけ微量物質が利用できる場合。
ポリマーの MALDI-TOF MS 分析は 4 つの個別の手順に分けることができます: 試料調製、測定器の校正、スペクトルの取得及びデータ分析。サンプル準備を生成するための最も重要なステップは MALDI-TOF 質量スペクトルを最適化され、楽器14,15にサンプルを導入前に発生します。高分子試料として同様の溶解度パラメーターの適切なマトリックスの選択は高品質 MALDI-TOF 質量スペクトルを得るために重要とマトリックスの選択がされている他の場所で報告された14,15、 16,17。高分子 MALDI のサンプル準備のための「レシピ」のデータベースは、公開されたオンライン18もされました。新規ポリマー マトリックスの選択は最初ポリマーの溶解性を理解し、似たような溶解度パラメーター14,19を持つ行列を選択する近づくことができます。高プロトン親和性ポリマーはほとんど行列で14 (これは頻繁にカルボン酸基を含む)、プロトン化をすることができますが、他の高分子カチオン エージェントが必要な14。アルカリ イオンの付加も酸素含有種 (e.gポリエステル、ポリエーテル) のに対し、不飽和炭化水素 (e.g。 ポリスチレン) 銀・銅イオン14,などの遷移金属付加。19. ナトリウムまたはカリウム トリフルオロ酢酸 (TFA) は、カチオン エージェントとして使われていたこの実験で高分子サンプルには、バックボーンに酸素原子が含まれている、ため。行列とカチオンのエージェントを選択すると、検体、陽イオンのエージェント、およびマトリックスの相対的な割合は高ノイズ信号を確保するため慎重に最適化されなければなりません。この手順のサンプル準備のためのパラメーターがすでに最適化されている、しかし、実証サンプル最適化プロシージャ (ステップ 1.4.1、図 1) 体系的に 3 つのコンポーネント (検体、濃度を変化する。行列と陽イオン) が急速に彼らの最適な比率を決定するため有効であります。
データ集録には、多数のパラメーターの最適化も必要です。最も重要なパラメーターには、分光器の正または負のイオン モードには、機器操作モード (反射鏡対線形)、加速電圧には抽出遅延時間が含まれます。解像度を増やすことができます別の方法は、「リフレクトロン」モード20,21,22,23の活用です。リフレクトロン モードは本質的に異なる運動量と焦点を移すイオンながらソースに近い検出器に向かって飛行管の終わりにイオンを反映しても解像度を増加させる検出器にイオンの飛行経路を倍増します。信号強度の減少。さらに、高分解能のスペクトルは、数と衝突のエネルギーを減らすための断片化と動力学的不均一性24を減らすことによってレーザー出力の信号対雑音比を最小化を減少させることによって取得できます。これらすべてのパラメーターを調整することにより初期位置またはレーザー脱離過程中に発生する速度の不均一性の影響を最小限に抑えるためにイオンを集中することができます。アクイジション ・ パラメーターが最適化されて、フライト チューブと計測器の設計の長さに依存しても、同位体比の解像度は 10,000 Da を超える質量を持つイオンの達成しばしば。少なくとも 1 つのヘテロ原子を含むほとんどの有機性の化合物は、リチウム、ナトリウム、カリウムなどアルカリ イオンと錯化する傾向があります。アルカリ金属の多くは、monoisotopes または限られた同位体のため分布を拡大しないと。
計測器のパラメーターは、データの精度を最適化するためにチューニングできる中、データの正確性は適切な校正11唯一達成します。タンパク質・ ペプチドはもともとその状単分散と可用性のための calibrants として使用されたが、可変安定性と不純物25の有病率に苦しみます。低コストで安定した選択肢は、無機クラスターと多高分子26,27,28,29に含まれています。残念ながら、これらの代替機能は複雑より小さい固まりと同様、大量の割り当て、全体的に、10,000 Da 以下校正のためにだけ有用であることの固まりを分散させます。これらの問題は、グレイソンらを戦う。25は、単分散、および広いマトリックスと溶媒の互換性、貯蔵寿命安定性 (> 8 年) と安い生産コストを誇るデンドリマー ベース、ポリエステルの MS 校正のシステムを開発しました。このシステムの強みに基づいて、それはこれらの実験 calibrant として選ばれました。
校正の 2 つの主なタイプがある: 内部および外部30。外部校正する場合、ブラケットの試料の質量と標準は校正ファイルを生成できます別の質量スペクトルを生成する試料よりも別のサンプル位置の MALDI ターゲット プレートに配置されます。その一方で、確度は calibrant と検体の両方の信号を持つハイブリッド スペクトルを得るに analyte と、calibrant を混合することによって、内部校正器でしばしば実現できます。以下の手順では、外部校正が実装されました。質量スケールの適切な校正後正確な検体大量のデータを取得できます。最も正確な校正を確保するため、調整後すぐにデータの取得が発生することが重要です。
最後に、一度、最適化された校正データ セットが得られポリマー サンプルの構造に関する情報を提供するためにデータを分析しました。N-mers 高分子ディストリビューション内の間隔の繰り返し単位の正確な測定を提供できる大容量。数平均分子量 (Mn) およびその他の質量分布の計算 (例えばMw (重量平均分子量) とĐ (カオリン)) 質量スペクトル (信号の分布からも判断できます4.2 計算の手順)。おそらく最もユニーク、ホモポリマーの場合エンド グループの質量の合計を確認できますポリマーだけで繰り返し単位の質量分布のオフセットを決定することによって。情報豊富な MALDI-TOF 質量スペクトルはサイズ排除クロマトグラフィー、フーリエ変換赤外分光法などのより伝統的な高分子解析技術を補完する貴重な特性データを提供し、核磁気共鳴。
注意: すべての反応は、ヒューム フードで実行しました。すべて安全性データ シート (MSDS) 任意の化学物質の使用し、適切な措置をお読みください。
1. サンプル準備
2. データ取得の最適化
3. MALDI 校正
4. データの解析と解釈
サンプル 1: ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸のサンプル (Mn = 5000) (図 3) は、行列として HCCA のカチオン エージェントとしてカリウム トリフルオロ酢酸を用いて解析しました。スペクトル展示予想される残留 Na+から観察だけでなく、付加体の K+ 。
MALDI-TOF MS は、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の狭い分布 (図 3) を確認する (Mn = 5000)。ピック ピーキング プロトコルが使用されます (排他的、最も豊富な元素同位体、 12C、 1H 16O、 14N すなわちから成る) モノアイソ ピークは、その識別を有効にするのに十分に解決できないため、各 n mer のピーク値の全体の同位体分布の平均質量を決定します。同様に、すべての理論的な計算は、各要素の平均よりもむしろモノアイソ、大衆を使用して決定されます。手順 4 から方程式を使用すると、解析ソフトウェアは、高分子の質量分布の次の特性を計算する使用された: Mn: 4700、Mw: 4710、 Đ: 1.00。
最後のグループのアイデンティティを確認するために個々 の n mer (104) はさらに分析 (図 4) に選ばれました。として質量分布計算モノアイソ ピークを解決できませんでした、ので平均質量値使用された後の計算のため。ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の 104 mer の理論質量値はプラス α アミン末端基 (+ 16.02300) と ω カルボキシル末端基 (+ 59.0440) の質量の質量 (44.0530 × 104) の繰り返しの単位の質量で構成されますと4695.67675 の合計 104-mer の質量を生成するカリウム イオン (+ 39.09775) の固まり。104 mer + K+の観測された質量値は理論値、平均質量計算の精度に一致する 4695.5 です。プラス α アミン末端基 (+ 16.02300) の質量 (44.0530 × 104) の繰り返しの単位の質量の 104-mer の理論質量値を構成する、ナトリウム イオン化ポリマーに対応するスペクトルのピークを小さく、オフセットのシリーズに加えて、ω カルボキシル末端基 (+ 59.0440) に加えて、4679.56822 の合計 104 mer 質量を与えるナトリウム陽イオン (+ 22.98922) の質量の質量。104 mer + Na+の観測された質量値は 4679.4 0.2 Da 理論値と異なるのみであります。最後のより正確な測定は質量をグループ化複数のピークに平均値を測定することによって決定できるし、されている他の場所で説明した11。
ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸 (Mn = 5000) サンプルは、2, 4-dinitrofluorobenzene (DNFB) (図 6) と反応 (図 5) による選択的官能基化時にその狭い分布を維持します。スペクトルを展示したナトリウムを内転、HCCA を行列として使用します。
MALDI-TOF MS は、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の狭い分布 (図 6) を確認する (Mn = 5000) DNFB に変更されたとき。手順 4 から方程式を使用すると、解析ソフトウェアは、高分子の質量分布の次の特性を計算する使用された: Mn: 4940、Mw: 4950 Đ: 1.00。
完全な場合を決定するためにポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の高機能化 (Mn = 5000) 分布の個別 n mer の分析 (図 7) に選ばれた DNFB で発生していた。ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の官能 104 mer の理論の質量と反応する 2, 4-dinitrofluorobenzene、44.0530 × 104 (繰り返し単位の質量) + 182.115 で構成されます (α-アミン グループの質量は、2, 4 - と反応しました。dinitrofluorobenzene) 59.044 (カルボキシル基の質量) + 22.98922 (ナトリウム陽イオンの質量) = 4845.66022。N の観測された質量値 = 104 は-0.1 である 4845.8 Da 理論値と異なる。この近くの契約理論と観測値の間は大きくなり、信号の欠如が出発原料、4811.72722 とこの 4855.78022 に関連付けられているが製品、原料の完全な変更を示す質量範囲、または任意の追加の副産物は、アミンの定量的選択的官能基化を確認します。機能性高分子の 103 mer に一致する 4823.8 で 2 番目のピークが観察されるがカルボン酸のプロトンの損失に終わりグループ-0.2 の差 4823.58899 の理論的な質量を持つ別のナトリウム イオンが錯体ダ。
サンプル 2: ポリオキシ エチレン bis(azide) のサンプル (Mn = 2000) (図 8) カチオン エージェントと HCCA マトリックスとして酢酸ナトリウムを用いて解析したし、予想される展示のみ付加体の Na+ 。
解像度はこの低質量範囲で達成のためごと n mers のモノアイソ ピークは簡単に解決できる可能性がありますとプロトコル選ぶモノアイソ ピークだった (同位体の配分の最初のピークの質量の信号のみを平均化を選択するので)、すべての対応する計算活用各要素のモノアイソ大衆。MALDI-TOF MS は、ポリオキシ エチレン bis(azide) の狭い分布 (図 8) を確認する (Mn = 2000)。手順 4 から方程式を使用すると、解析ソフトウェアは、高分子の質量分布の次の特性を計算する使用された: Mn: 1940 年、Mw: 1950 年、 Đ: 1.01。
エンド グループ化を確認するために個々 の n mer (42) が選ばれました (図 9)。上記で決定した質量の分布とモノアイソ大衆はモノアイソ ピークはそれぞれ n-mer の同位体比の分布によく解決されたので使用されました。ポリオキシ エチレン bis(azide) の 42 mer の理論的な質量値 44.02621 × 42 (繰り返し単位の質量) + 42.00922 (アジドフェニル エンド グループの質量) + 70.04052 (azidoethyl エンド グループの質量) + 22.98922 (ナトリウム陽イオンの質量) に対応して 1984.13978 を =。N の観測された質量値 = 42 は 0.19 Da 理論値と異なるである 1983.95。高いレーザーで、特にアジ化機能は準安定の断片を表わすことができることに注意してください。ただし、これはこの特定のケース31で観察されなかった。
ポリオキシ エチレン bis(azide) (Mn = 2000) サンプル保持されます (図 10) 1-エチニル-4-fluorobenzene(EFB)銅触媒アジ化物アルキン環化付加反応による選択的官能基化時にその狭い分布(図 11) 4 fluorophenyltriazolyl (FPT) グループを生成します。スペクトル、展示予想 Na+付加体のカチオン エージェントと HCCA マトリックスとして酢酸ナトリウムを使用してから。
MALDI-TOF MS を確認(図 11)ポリオキシ エチレン bis(azide) の狭い分布 (Mn = 2000) EFB で機能化後。手順 4 から方程式を使用すると、解析ソフトウェアは、次のポリマー特性を計算する使用された: Mn: 2240 Mw: 2250 Đ: 1.00。
このサンプルの完全な機能を確認するには、モノアイソ大衆は、選択した個別 n-mer (42) (図 12) を分析する使用されました。ポリオキシ エチレン bis(azide) の 42 mer の理論質量値と反応 1-エチニル-4-fluorobenzene 44.02621 × 42 (繰り返し単位の質量) + 162.04675 (FPT エンド グループの質量) + 190.07805 に対応 (質量、 FPT エチル エンド グループ1-エチニル-4-fluorobenzene) と 22.98922 (ナトリウム陽イオンの質量) + 2224.21484 を =。N の観測された質量値 = 42 は 0.05 Da 理論値と異なるである 2224.16。
サンプル 3: チオール基末端ポリ-l-乳酸のサンプル (Mn = 2500) (図 13) カチオン剤として酢酸ナトリウムを用いて解析したし、予想される展示のみ付加体の Na+と DHB マトリックスとして。
MALDI-TOF MS は、チオール基末端ポリ-l-乳酸の狭い分布を確認する (Mn = 2500). (図 13)手順 4 から方程式を使用して、プログラムの解析は次のポリマー特性を計算する使用された: Mn: 2310 Mw: 2360 Đ: 1.02。
サンプルの完全な機能の発現を確認するには、モノアイソ大衆は、選択した各 n-mer (26) (図 14) を分析する使用されました。チオール基末端ポリ-l-乳酸の 26 mer の理論質量値 (Mn = 2500) 72.02113 × 26 (繰り返し単位の質量) + 17.00274 (ヒドロキシル グループの質量) + 61.0112 (ω チオール末端基の質量) + 22.98922 (ナトリウムの質量に対応します。陽イオン) = 1973.55254。N の観測された質量値 = 26、1973.62-0.07 である Da 理論値と異なる。小さい信号は、72.02113 × 27 (繰り返し単位の質量) + 17.00274 (水酸基末端基の質量) + 61.0112 (ω チオール末端基の質量) + 22.98922 (ナトリウム陽イオンの質量) に対応する 2045.74 で観測されました。理論的な質量が観測された質量から 0.17 の違いは 2045.57367 です。この小さな強度は、奇数単位は乳酸の重合を開環中にエステル交換反応を示すものを繰り返します。3 分の 1、2057.73 で非常にマイナーなピークが観察されます。これは-0.14 Da 質量 72.02113 × 27 (繰り返し単位の質量) + 17.00274 (水酸基末端基の質量) + 73.02895 (質量の理論的な質量を持つカルボン酸末端基 (チオール エンド グループではなく) とポリ-l-乳酸の理論値とは異なるカルボン酸) + 22.98922 (ナトリウム陽イオンの質量) = 2057.59142。この追加のマイナーな不純物が乳酸モノマーの重合を開環水から発生の結果である可能性が高い。
ポリ-l-乳酸、チオール終端 (Mn = 2500) サンプルは、マレイミド (図 16) チオール-エン反応 (図 15) による選択的官能基化時にその狭い分布を維持します。スペクトル、展示予想 Na+付加体のマトリックスとしてカチオン エージェントと DHB 酢酸ナトリウムを使用してから。
MALDI-TOF MS は、ポリ-l-乳酸、チオール基末端の狭い分布を確認する (Mn = 2500) マレイミド (図 16).チオール-エン反応後手順 4 から方程式を使用すると、解析ソフトウェアは、次のポリマー特性を計算する使用された: Mn: 2310 Mw: 2340, Đ: 1.01。(MALDI-TOF MS の欠点の 1 つ) イオン化バイアスにより Mnおよび Mw出発原料と比較しての減少であることに注意してください。出発材料に変更が比較的小さい (この特定の修正で Da ~ 97) とカオリン減少後置修飾、MALDI-TOF MS 平均分子量の計算は精度が低くなることができます。
チオールが終了、プロテの完全な機能の発現を確認する (Mn = 2500) チオール-エン反応を経由したマレイミド、モノアイソ大衆は、選択した各 n-mer (26) (図 17) を分析する使用されました。チオール基末端ポリ-l-乳酸の 26 mer の理論的な質量値 72.02113 × 26 (繰り返し単位の質量) + 17.00274 (水酸基末端基の質量) + 158.02757 (マレイミドにリンク ω チオール末端基の質量) + 22.98922 に対応 (の質量、ナトリウムの陽イオン) = 2070.56891。N の観測された質量値 = 26、2070.54 0.03 Da 理論値と異なるであります。電離カリウムと同じ種はまた観測 2086.49、理論的質量 0.05 Da 違い形式に対応します。72.02113 × 28 (繰り返し単位の質量) + 17.00274 (水酸基末端基の質量) + 72.02168 (カルボン酸陰イオンの質量) + 22.98922 (ナトリウム陽イオンの質量) + 38.96371 (カリウム イオンの質量) に対応する 2167.58 では、非常に小さなピークが観察されます。理論的な質量は、-0.01 株である 2167.56844 観測された質量から差、開始材料で観察された水開始から同じトレース不純物を示す。このポリマーは、ナトリウム、カリウム、一と陽子の損失の 1 つに相当するイオンを展示します。カルボン酸のプロトンおよび 2 つの陽イオンとの錯形成の損失は、モノカルボン酸の機能性高分子のイオン化の一般的なモードです。このカルボン酸で終わる化合物の官能基化反応を受けるチオール エンド グループを欠いていることを更に示すチオール-エン反応生成物が得られ, 質量で同じシフトが発生しないことに注意してくださいすることが重要です。
図 1:3 x のサンプル比測定の 3 グリッド。サンプルの 3 × 3 のグリッドを使用して、カチオン エージェント-試料マトリックスの相対濃度は、最適化された試料を経験的判断に体系的に様々 なことが。(カチオン エージェント (y 軸) と行列 (x 軸)) 他の 2 つの量を増加させながら 3 つの変数の定数 (15 μ L 試料溶液の) の 1 つを保持することによってこれは通常セットの複数のコンポーネント (3 倍の例で描かれている)。この図の拡大版を表示するのにはここをクリックしてください。
図 2: MALDI-TOF MS ターゲット プレートします。MALDI-TOF MS ターゲット プレートは、分析のための個々 の井戸のモルディブ TOF MS サンプルを保持する金属製のプレートです。この図の拡大版を表示するのにはここをクリックしてください。
図 3: サンプル 1 の MALDI-TOF 質量スペクトル。この完全なスペクトルは、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の全体的な分布を示しています (Mn= 5000) Na+と K+イオン化します。この図の拡大版を表示するのにはここをクリックしてください。
図 4: サンプル 1 の繰り返し単位の MALDI-TOF 質量スペクトル。このスペクトルは、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の繰り返し単位を示しています (Mn = 5000) 末端基分析のため。この図の拡大版を表示するのにはここをクリックしてください。
図 5: サンプル 1 変更の反応スキーム。出発原料の末端基を確認するには、poly(ethylene glycol) 2-アミノエチル エーテル酢酸 2, 4-dinitrofluorobenzene (別名サンガー試薬) と反応しました。この図の拡大版を表示するのにはここをクリックしてください。
図 6: サンプル 1 変更の MALDI-TOF 質量スペクトル。この完全なスペクトルは、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の全体的な分布を示しています (Mn = 5000) 修飾と 2, 4-dinitrofluorobenzene。この図の拡大版を表示するのにはここをクリックしてください。
図 7: サンプル 1modification の繰り返し単位の MALDI-TOF 質量スペクトル。エンド グループ化を確認するためにこのスペクトルは、ポリ (エチレング リコール) 2-アミノエチル エーテル酢酸の繰り返し単位を示しています (Mn = 5000) 2, 4-dinitrofluorobenzene との反応による。この図の拡大版を表示するのにはここをクリックしてください。
図 8: サンプル 2 の MALDI-TOF 質量スペクトル。この完全なスペクトルは、ポリオキシ エチレン bis(azide) の全体的な分布を示しています (Mn = 2000) (na)+イオン付加します。この図の拡大版を表示するのにはここをクリックしてください。
図 9: サンプル 2 の繰り返し単位の MALDI-TOF 質量スペクトル。このスペクトルはポリオキシ エチレン ビスアジド系の繰り返し単位を示しています (Mn = 2000) 末端基を確認するためにこの図の拡大版を表示するのにはここをクリックしてください。
図 10: サンプル 2 変更の反応スキーム。開始材料、ポリオキシ エチレン ビスアジド系の末端基を確認する (Mn = 2000) 銅触媒のアジ化物アルキン環化付加反応 (CuAAC) 経由で 1-エチニル-4-fluorobenzene と反応しました。この図の拡大版を表示するのにはここをクリックしてください。
図 11: MALDI-TOF 質量スペクトルのサンプル 2 変更します。この完全なスペクトルは、ポリオキシ エチレン bis(azide) の全体的な分布を示しています (Mn = 2000) 修飾と 1-エチニル-4-fluorobenzene。この図の拡大版を表示するのにはここをクリックしてください。
図 12: サンプル 2 変更の繰り返し単位の MALDI-TOF 質量スペクトル。このスペクトルはポリオキシ エチレン bis(azide) の繰り返し単位を示しています (Mn = 2000) 終わりグループ化を確認するため銅触媒アジ化物アルキン環化付加反応による 1-エチニル-4-fluorobenzene と反応しました。この図の拡大版を表示するのにはここをクリックしてください。
図 13: サンプル 3 の MALDI-TOF 質量スペクトル。チオール終端のこの完全なスペクトルは、ポリ-l-乳酸の全体的な分布を示しています (Mn = 2500)。この図の拡大版を表示するのにはここをクリックしてください。
図 14: サンプル 3 の繰り返し単位の MALDI-TOF 質量スペクトル。スペクトルは、ポリ-l-乳酸、チオール基末端の繰り返し単位を示しています (Mn = 2500) 末端基を確認します。この図の拡大版を表示するのにはここをクリックしてください。
図 15: サンプル 3 変更の反応スキーム。出発原料、ポリ-l-乳酸、チオール末端を確認する終了 (Mn = 2500) チオール-エン カップリングを介してマレイミドと反応しました。この図の拡大版を表示するのにはここをクリックしてください。
図 16: サンプル 3 変更の MALDI-TOF 質量スペクトル。チオール終端のこの完全なスペクトルは、ポリ-l-乳酸の反応の製品の全体的な分布を示しています (Mn = 2500) とマレイミド。この図の拡大版を表示するのにはここをクリックしてください。
図 17: サンプル 3 修正の繰り返し単位の MALDI-TOF 質量スペクトル。エンド グループ化を確認するためにこのスペクトルはチオール基末端ポリ-l-乳酸の繰り返し単位を示しています (Mn = 2500) マレイミドとチオール-エン反応後。この図の拡大版を表示するのにはここをクリックしてください。
MALDI-TOF 質量分析法は、高分子分析のための非常に貴重な分析ツールを最小限の断片と単独で充電した状態で高分子イオンを生成する能力があるためです。このソフトのイオン化法では、気相中で高分子イオンを生成する化合物のマトリックスに埋め込まれたポリマー検体の固体サンプルを脱着し短レーザー パルスを利用しています。高分子は、通常質量分析法による分析を有効にするマトリックスに追加される陽イオンとの錯形成によりイオン化されました。これらの高分子のイオンは、飛行時間型のイオン源と検出器の5に基づいて決定する彼らのm/zをできる飛行管のフィールド フリー領域にそれらをもたらすに抽出電圧により加速され、,32。
その他高分子キャラクタリゼーション技術に比べて、MALDI-TOF MS スペクトル品質はデータ集録パラメーターおよびサンプル準備に大きく依存です。サンプル準備のための決まった公式はありませんがサンプル準備の各コンポーネントの関数について実証的最適化をより迅速にことができます。MALDI のサンプル準備の最も重要な要因は、高分子試料とマトリックス互換性がイオン状態5、1 つ、脱離の高分子を生成する興奮のマトリックスの重要な行列の選択 15,17,19。適切なマトリックスおよびカチオンのエージェントを選択すると、検体、マトリックス、およびカチオンのエージェントの正しい比率を決定する必要があります。これは 1 つの軸でマトリックス濃度を増加させるとのカチオン剤濃度の増加と MALDI-TOF MS ターゲット プレート (図 2) のサンプル (図 1) の二次元のグリッドを作成する経験的によって達成することができます、その他。
MALDI のサンプル準備と同様に、ある決まった公式はありませんデータ集録パラメーターを決定するためただし、スペクトル最適化を促進するために特定の傾向を考慮する必要があります。リフレクトロン モードは、解像度が増加が全体的な信号が低下、通常、同位体の解像度を実現することができます (これらの例は、4,000 Da 以下) で低質量範囲に対して選択されます。このような場合、モノアイソ質量計算と方法を選んでピークが使用されていました。4,000 Da 上の質量を持つポリマー サンプルの線形モードは平均質量計算やピーキングのピッキング方法で使用されました。信号の解像度を向上させるため、イオン ソース間電圧は、大きな電圧差を有する大きな質量高分子の一般的な傾向を少しずつ調整する必要が (IS1 IS2 対)。
試料調製及び取得中に最適化されたパラメーターは精度を提供することができます、質量精度は効果的な校正によってのみ達成できます。変数集録パラメーターともプレートの位置に関して特定大量の飛行時間が微妙に変化することができます、したがって、校正実施されなければならない最適化された集録パラメーターのセットごとに正確な質量を降伏するために決定5,30。集録パラメーターとサンプル準備を最適化すると、スペクトルはこれらの正確な同じ条件を使用して校正する必要があります。
優れた分解能と質量精度の最適化されたポリマーの MALDI-TOF 質量スペクトルで観察のためこの手法は高分子質量分布データを決定するための貴重な無料ツールになりました。ただし、質量分布はポリマー内の各繰り返しユニットを解決できる利点を提供します特定に対する他のポリマーの末端基分析のゲル浸透クロマトグラフィー (GPC) など解析技術と核磁気共鳴 (NMR)。これは最後グループ機能化反応の再現性とエンド グループ動詞反応の定量的性質を決定するため、特に貴重です。この原稿は、2 台まで小数点質量精度、高い信頼度と最後のグループの変更の確認を有効にする個々 のポリマーの繰り返し単位の質量を解決する能力を実証しています。精密高分子合成の分野で最近行われている実質的な進歩、MALDI-TOF MS はますます重要なツールになっている高分子の構造と機能を決定します。
著者は、この研究で使用される球形の calibrants に関連する金融関心を持っています。
著者は、スマート材料設計、分析、および処理コンソーシアム (SMATDAP) によって資金を供給国立科学財団共同契約 IIA 1430280 ・ ラ理事会大学院フェローシップ (MEP) を認めます。これらの実験のための高分子サンプルは、MilliporeSigma (シグマ アルドリッチ) によって提供されました。 この記事のアクセス文書を開くには MilliporeSigma が主催します。
Name | Company | Catalog Number | Comments |
polyoxyethylene bis(azide) (Mn=2000) | MilliporeSigma (Aldrich) | 689696 | http://www.sigmaaldrich.com/catalog/product/aldrich/689696?lang=en®ion=US |
poly(ethylene glycol) 2-amino-ethyl ether acetic acid (Mn= 5000) | MilliporeSigma (Aldrich) | 757918 | http://www.sigmaaldrich.com/catalog/product/aldrich/757918?lang=en®ion=US |
poly(L-lactide), thiol terminated (Mn=2500) | MilliporeSigma (Aldrich) | 747386 | http://www.sigmaaldrich.com/catalog/product/aldrich/747386?lang=en®ion=US |
SpheriCal® peptide low | MilliporeSigma (Sigma-Aldrich) | PFS20 | http://www.sigmaaldrich.com/catalog/product/sial/pfs20?lang=en®ion=US |
SpheriCal® peptide medium | MilliporeSigma (Sigma-Aldrich) | PFS21 | http://www.sigmaaldrich.com/catalog/product/sial/pfs21?lang=en®ion=US |
SpheriCal® peptide high | MilliporeSigma (Sigma-Aldrich) | PFS22 | http://www.sigmaaldrich.com/catalog/product/sial/pfs22?lang=en®ion=US |
2,4 dinitrofluorobenzene | TCI | A5512 | |
maleimide | MilliporeSigma (Aldrich) | 129585 | http://www.sigmaaldrich.com/catalog/product/aldrich/129585?lang=en®ion=US |
1-ethynylfluorobenzene | Fisher Scientific | 766-98-3 | |
triethylamine | MilliporeSigma (Sigma-Aldrich) | 471283 | http://www.sigmaaldrich.com/catalog/product/sial/471283?lang=en®ion=US |
N,N,N',N",N"-pentamethyldiethylenetriamine | MilliporeSigma (Aldrich) | 369497 | http://www.sigmaaldrich.com/catalog/product/aldrich/369497?lang=en®ion=US |
Copper(I)Bromide | MilliporeSigma (Aldrich) | 254185 | http://www.sigmaaldrich.com/catalog/product/aldrich/254185?lang=en®ion=US |
glacial acetic acid | Fisher Scientific | A38212 | |
sodium metabisulfite | MilliporeSigma (Sigma-Aldrich) | 13459 | http://www.sigmaaldrich.com/catalog/product/sigald/13459?lang=en®ion=US |
potassium trifluoroacetate | MilliporeSigma (Aldrich) | 281883 | http://www.sigmaaldrich.com/catalog/product/aldrich/281883?lang=en®ion=US |
trans-2-[3-(tert-butylphenyl)-2-methyl-2-properylidene]malononitrile | MilliporeSigma (Aldrich) | 727881 | http://www.sigmaaldrich.com/catalog/product/aldrich/727881?lang=en®ion=US |
a-cyano-4-hydroxycinnamic acid | MilliporeSigma (Sigma) | C8982 | http://www.sigmaaldrich.com/catalog/product/sigma/c8982?lang=en®ion=US |
tetrahydrofuran | Fisher Scientific | T425-1 | |
dichloromethane | VWR Analytical | BDH1113-4LG |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved