JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

この作品は Sb2S3 SbCl3を用いたメソポーラス TiO2層の堆積のため詳細な実験手順を提供します-チオ尿素 Sb2S3のアプリケーションに複雑なソリューション-増感太陽電池。この記事は、成膜プロセスを支配する重要な要因を決定します。

要約

Sb2S3は、ユニークな光学および電気特性のため次世代太陽電池に適用することができます新たな光の吸収体の 1 つとして考慮されます。最近では、我々 は Sb2S3の > 6% の太陽光発電効率を達成することで次世代太陽電池としての可能性を示す-単純なチオ尿素 (TU) を用いた太陽電池の増感-複雑なソリューションの手法します。ここでは、太陽電池の作製に SbCl3TU-複雑なソリューションを使用してメソポーラス TiO2 (mp TiO2) レイヤー上 Sb2S3の沈着の重要な実験手順について述べる。N, N- ジメチルホルムアミド SbCl3モル比が異なるでに SbCl3と TU を溶解することにより、SbCl3TU - ソリューションは合成: 火Mp TiO2/TiO2から成る準備として基板上のソリューションの堆積、-スピン コーティング層/F ドープ SnO2ガラス ブロックします。最後に、結晶 Sb2S3を形成するには、サンプルは、アニールされる N2-300 ° C でグローブ ボックスをいっぱい太陽光発電デバイスの性能に及ぼす実験的パラメーターについても説明します。

概要

アンチモン系カルコゲナイド (Sb Chs)、Sb2S3Sb2Se3Sb2(S, Se)3CuSbS2などは次世代太陽電池1 で使用できる新たな材料と見なされます ,2,3,4,5,6,7,8。ただし、Sb Chs 光吸収に基づく太陽光発電デバイスに達していない 10% の電力変換効率 (PCE) 実現可能な実用化を実証する必要があります。

これらの制限を克服するために様々 なメソッドやテクニックを適用したチオアセトアミド表面処理1室温成膜方法4、原子層堆積法2の使用などドット コロイド量子ドット6。これらの様々 な方法のうち化学浴の分解に基づくソリューション処理は最高のパフォーマンスの1を展示しました。ただし、化学反応と治療後の正確な制御がベスト パフォーマンス1,3を達成するために必要です。

最近、我々 はパフォーマンスの高い Sb2S3の単純なソリューション処理を開発-SbCl3を用いた太陽電池の増感-チオ尿素 (TU) 複雑なソリューション3。このメソッドを使用して、6.4% の同等のデバイスのパフォーマンスを達成するために太陽電池に適用された制御の Sb/秒比の品質の Sb2S3を作製することができました PCE。また、Sb2S3は、シングル ステップ蒸着により作製したので、効果的に処理時間を短縮することができた。

この作品は、メソポーラス TiO2 (mp TiO2) から成る基板上 Sb2S3の成膜の詳細な実験手順について述べる TiO2層のブロック/(TiO2の BL)/F をドープした SnO2 (Sb2S3の作製の FTO) ガラス ・太陽電池を介してSbCl3TU-複雑なソリューション処理3増感します。さらに、Sb2S3成膜過程で太陽電池の性能に影響を与える 3 つの主要要因は識別され説明。法の考え方は、金属硫化物に基づくその他の増感型太陽電池に簡単に適用できます。

プロトコル

1. TiO2の BL ソリューションの合成

  1. 2 透明バイアル 50 mL ボリュームを準備します。
  2. 1 バイアル (V1) にエタノール 20 mL を追加し、V1 をシールします。
  3. N2に V1 を転送-< 1 ppm の H2O レベルの水分制御システムでグローブ ボックスをいっぱい。
  4. 1.225 mL を追加 (IV) チタンイソプロポキシド (TTIP) v1 の 0.45 μ m PVDF フィルターとゆっくり注射器を使用して、少なくとも 30 分間混合物をかき混ぜます。
    注: グローブ ボックス (または非常に低湿度条件下で) にこの手順が実行する必要があります TTIP は水分に非常に敏感なので。Ttip は透明ではない場合、ソリューションの中白い析出物が観察されるそれされます、望ましくない反応が既にソリューション内部発生したため。
  5. その他準備バイアル (V2)、追加 HNO3 (70%) の 18 μ L H2O エタノール 20 mL に 138 μ L マイクロ ピペットを使用して軽く、少なくとも 30 分間混合物をかき混ぜると。
    注: この手順は、H2O が使用されるため、グローブ ボックスで実行できませんする必要があります。
  6. V1 ソリューションに V2 ソリューションを注ぐことによって 2 ソリューションをミックスし、透明 0.1 M TiO2の BL ソリューションを合成する 2 時間以上撹拌します。
    メモ: 最終的な解決策は、透明でなければなりません。ソリューションが透明でない場合は、透明の液が得られるまで再します。正常に準備 TiO2の BL ソリューションは、< 50% の湿度条件で数日間安定しています。

2. 各種 SbCl3/TU モル比 SbCl3TU - ソリューションの合成

注: 合成は、湿気に SbCl3の非常に高い感受性のためグローブ ボックスで実行する必要があります。

  1. グローブ ボックス内 SbCl3ストック ソリューション [SbCl3 N, N- ジメチルホルムアミド (DMF) の 1 mL 中 1 モル] を準備します。たとえば、DMF の 32.2 mL 原液 30 mL に SbCl3の 6.486 g を追加します。
  2. SbCl3/TU. の目的のモル比と SbCl3TU - ソリューションを合成する TU の指定された量を含むバイアルに原液の適切な量を追加します。たとえば、2 つのバイアルはそれぞれ 0.1 g を含む、TU の SbCl3/TU 比 1/1.5 と 1/2.5 でのソリューションをそれぞれ合成する他に原液バイアルと 0.5637 mL 0.9394 mL を追加。

3. mp TiO2/TiO2- BL/FTO から成る基板の作製ガラス

  1. アセトン エタノールに続いて、10 分間で超音波風呂で 25 mm × 25 mm の FTO コーティング ガラス (FTO ガラス) を洗浄します。
    注: 太陽光発電のデバイスを作製するには、使用済みパターンの FTO ガラス 5-10 mm × 25 mm の FTO 表面を完全にエッチングします。
  2. 即座にサンプルを圧縮空気を吹いて乾燥 FTO ガラス。
  3. 20 分間掃除機 UV/O3 FTO ガラスを扱います。
  4. 60 5,000 rpm で FTO ガラス コート エタノールをスピン s。
  5. ステップ 3.4 の同じ条件の下で準備された TiO2の BL ソリューションをすぐにスピン コート。
  6. 200 度で予熱したホット プレート上に置くことによって 2 分の FTO ガラスを乾燥します。
  7. 3.5、3.6 TiO2の BL の所望の厚さを取得する手順を繰り返します。
  8. TiO2ペースト (50 nm TiO2粒) とポリエステル マスク スクリーン印刷法を用いた TiO2の BL/FTO ガラス上 mp TiO2層に堆積します。
  9. 30 分 500 ° C で mp TiO2/TiO2- BL/FTO ガラスをアニールします。
  10. それらを室温に冷却した後透明な水溶液 40 mM TiCl4ソリューションの焼なまし材の基板を浸します。
    注: 40 mM TiCl4ソリューションは透明でなければなりません。場合は、基板は、彼らが冷却される前に TiCl4溶液浸漬は、基板とソリューションの大きな温度差のため簡単に侵入できます。
  11. 60 ° C でオーブンに基板を転送し、1 時間を保存します。
  12. 数回ぬるま湯で基板を洗浄して即座にそれらの blowingcompressed 空気で乾燥させる.
    注: 基板の割れを防ぐためには、暖かい水を使用 (約 60 ° C) と洗浄します。
  13. 30 分 500 ° C で再度基板をアニールします。

4. Sb2S3 mp TiO2/TiO2- BL/FTO の基板上の成膜ガラス

  1. 20 分間、表面をきれいにするクリーナー UV/O3基板を扱い、グローブ ボックスに転送します。
  2. スピンコーター SbCl3TU - ソリューションとそれらをスピンコート 60 s 前の 3,000 rpm で基板上に DMF 溶媒。
  3. 部分の熱分解と非晶質相の形成のための 150 の ° C のホット プレートにそれらを置くことによって 5 分間としてコーティングされた基板を加熱します。
  4. 300 ° C 相形成のため 10 分で予熱したホット プレート上にサンプルを配置します。
  5. 部屋の温度に試料を冷却した後、グローブ ボックスからそれらを削除します。

5. Sb2S3の作製-太陽電池の増感

  1. クロロ ベンゼン 1 mL に poly(3-hexylthiophene) (P3HT) の 15 mg を追加し、明確な赤みを帯びたソリューションが得られるまで優しくそれらを攪拌します。
  2. Sb2S3コート クロロ ベンゼンのスピン-60 の 3,000 rpm で基板を作製した s。
  3. 5.2 の手順で使用したのと同じ条件下で調製した P3HT 溶液で再びコートをすぐにスピンします。
  4. 蒸発器の真空チャンバー内に試料を転送します。
  5. 率が 1.0 の金預金 100 nm Å/秒。

結果

図 1は、mp TiO2/TiO2- BL/FTO ガラス基板上 Sb2S3成膜実験手順の概略を示します。図 1 dは、基本的なプロパティと記載法により作製した代表的な製品のスキームを示しています。輝安鉱 Sb2S3構造1,3,4の主要な x ?...

ディスカッション

TiO2の BL は、広く太陽電池におけるホールブロッ キング層として使用します。図 2のように、大きな違いは TiO2の BL 厚さに応じてデバイスのパフォーマンスで観察された.したがって、批判的に FTO と正孔輸送材料11の間の直接の接触を防止するホールブロッ キング層として機能するため最高の全体的なデバイスの性能を取得するその厚?...

開示事項

著者が明らかに何もありません。

謝辞

この作品は、大邱慶北科学研究所と技術 (DGIST) R & D プログラム科学省の ICT、韓国によって支えられた (助成金 18-エ-01 号、18-01-強-04)。

資料

NameCompanyCatalog NumberComments
Ethyl alcohol, Pure, >99.5%Sigma-Aldrich459836
Titanium(IV) isopropoxide 97%Aldrich205273
Nitic acid, ACS reagent, 70%Sigma-Aldrich438073
Antimony(III) chlorideSigma-Aldrich311375
ThioureaSigma-AldrichT7875
N,N-Dimethylformamide, anhydrous, 99.8%Sigma-Aldrich227056
TiO2 paste with 50 nm particlesShareChemSC-HT040
Poly(3-hexylthiophene)1-MaterialPH0148
ChlorobenzeneSigma-Aldrich284513
FTO/glass (8 Ohmos/sq)Pilkington
Spin coaterDONG AH TRADE CORPACE-200
Hot plateAS ONE CorporationHHP-411
Glove boxKIYONKK-021AS
UV OZONE CleanerAHTECH LTSAC-6
FurnaceWiseThermFP-14
UV/Vis Absorption spectroscopyPerkinElmerLambda 750
Multifunctional evaporator with glove boxDAEDONG HIGH TECHNOLOGIESDDHT-SDP007

参考文献

  1. Choi, Y. C., Lee, D. U., Noh, J. H., Kim, E. K., Seok, S. I. Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. Advanced Functional Materials. 24 (23), 3587-3592 (2014).
  2. Kim, D. -. H., et al. Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition. Nanoscale. 6 (23), 14549-14554 (2014).
  3. Choi, Y. C., Seok, S. I. Efficient Sb2S3-Sensitized Solar Cells Via Single-Step Deposition of Sb2S3 Using S/Sb-Ratio-Controlled SbCl3-Thiourea Complex Solution. Advanced Functional Materials. 25 (19), 2892-2898 (2015).
  4. Godel, K. C., et al. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies. Chemical Communications. 51 (41), 8640-8643 (2015).
  5. Choi, Y. C., et al. Sb2Se3-Sensitized Inorganic-Organic Heterojunction Solar Cells Fabricated Using a Single-Source Precursor. Angewandte Chemie International Edition. 53 (5), 1329-1333 (2014).
  6. Chen, C., et al. 6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer. ACS Energy Letters. 2 (9), 2125-2132 (2017).
  7. Choi, Y. C., et al. Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers. Advanced Energy Materials. 4 (7), 1301680 (2014).
  8. Choi, Y. C., Yeom, E. J., Ahn, T. K., Seok, S. I. CuSbS2-Sensitized Inorganic-Organic Heterojunction Solar Cells Fabricated Using a Metal-Thiourea Complex Solution. Angewandte Chemie International Edition. 54 (13), 4005-4009 (2015).
  9. Versavel, M. Y., Haber, J. A. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films. 515 (18), 7171-7176 (2007).
  10. Yang, B., et al. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film: molecular precursor identification, film fabrication and band gap tuning. Scientific Reports. 5, 10978 (2015).
  11. Peng, B., et al. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coordination Chemistry Reviews. 248 (13-14), 1479-1489 (2004).
  12. Chen, C., et al. Accelerated Optimization of TiO2/Sb2Se3 Thin Film Solar Cells by High-Throughput Combinatorial Approach. Advanced Energy Materials. 7 (20), 1700866 (2017).
  13. Sung, S. -. J., et al. Systematic control of nanostructured interfaces of planar Sb2S3 solar cells by simple spin-coating process and its effect on photovoltaic properties. Journals of Industrial and Engineering Chemistry. 56, 196-202 (2017).
  14. Gong, J., Liang, J., Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable & Sustainable Energery Reviews. 16 (8), 5848-5860 (2012).
  15. Jeon, N. J., et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials. 13 (9), 897-903 (2014).
  16. Choi, Y. C., Lee, S. W., Jo, H. J., Kim, D. -. H., Sung, S. -. J. Controlled growth of organic-inorganic hybrid CH3NH3PbI3 perovskite thin films from phase-controlled crystalline powders. RSC Advances. 6 (106), 104359-104365 (2016).
  17. Choi, Y. C., Lee, S. W., Kim, D. -. H. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films. APL Materials. 5 (2), 026101 (2017).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

137 Sb2S3

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved