Method Article
このプロトコルの目的は、嫌気性室を使用せずに、局所的に購入された食品、特にイプシロン毒素産生株タイプBおよびDにおける異なるクロストリジウム・パーフリンゲン毒素を検出することです。
クロストリジウム・パーフリンゲンス(C.パーフリンゲンス)は多産毒素の生産者であり、様々な宿主に広範囲の疾患を引き起こす。C.パーフリンゲンは、4つの主要な毒素遺伝子の運送に基づいて、5つの異なる毒素型AからEに分類される。これらの様々なトキシノタイプの有病率と分布は、特にアメリカの小売食品におけるその普及性が研究されている。私たちにとって特に興味深いのは、イプシロン毒素を産生するB型およびD型株であり、ヒトにおける多発性硬化症の環境トリガーであることが示唆された非常に致命的な毒素である。様々な食品試料中の異なるC.パーフリンゲンキシノタイプの存在を評価するために、3つの培養工程のみを含む嫌気性容器システムを使用せずにこれらの細菌を選択的に培養する簡単な方法を開発した。食品は地元の食料品店から購入し、周囲の条件下で研究室に輸送されます。サンプルを細かく刻み、改変された急速なパーフリンゲン媒体(RPM)に接種し、密封された気密円錐形の管で37°Cで一晩インキュベートする。一晩培養物は、固体トリプトス・スルフィート・シクロセリン(TSC)寒天の底層に接種され、その後、溶融TSC寒天の最上層と重ね合わされ、「サンドイッチ」、嫌気性環境を作成します。寒天プレートを37°Cで一晩インキュベートし、次いで黒色の亜硫酸還元コロニーの出現を評価した。C.パーフリンゲン-疑わしいコロニーは、無菌の点眼ロッパーを使用してTSC寒天から除去され、気密円錐管で37°Cで一晩RPMに接種し、サブ培養した。DNAをRPMサブ培養から抽出し、次いでポリメラーゼ連鎖反応(PCR)を介してC.パーフリンゲン毒素遺伝子の存在について分析する。サンプリングされた食品の種類に応じて、通常、サンプルの15~20%がC.パーフリンゲンに対して陽性をテストする。
クロストリジウム・パーフリンゲンス(C.パーフリンゲンス)は、グラム陽性、嫌気性、胞子形成、環境中でユビキタスに見られる棒状の細菌である。この種の細菌は、17種類以上の毒素をコードする遺伝子を運び、歴史的に、アルファ、β、イプシロン、およびイオタ毒素(表1)の4つの異なる毒素遺伝子の存在に基づいて5つの毒素型(A-E)に特徴付けられてきた。最近では、このタイピングスキームは、C.パーフリンゲンエンテロトキシン(CPE)とNetB毒素をそれぞれ2を収容するタイプFとGを含むように拡張する必要が示唆されている。しかし、このシェーミングシステムが正式に受け入れられる前に、より多くの研究が必要です。アルファ毒素遺伝子は厳密に染色体に位置していますが、CPE遺伝子は染色体とプラスミドの両方で見つけることができます。対照的に、残りの毒素の遺伝子は、様々な異なるサイズのプラスミドに見られる。我々は、これらの株がイプシロン毒素、非常に強力な、毛穴形成毒素を産生するようにC.パーフリンゲンタイプBおよびDの有病率に特に興味を持っており、これはヒト3における多発性硬化症(MS)を引き起こす役割を果たすことが示唆されている。 ,4,5,6,7.人々がこれらの株によって感染または植民地化される方法は不明です。考えられる説明の一つは、汚染された食品の消費を通じてです。この質問に答えるために、我々はアメリカの食品サンプルにおける異なるC.パーフリンゲントキシノタイプの有病率を決定しようとした。
アメリカの食品サンプルにおけるC.パーフリンゲントキシノタイプの存在は研究され、しばしば嫌気性容器システムおよび多数のサブ培養ステップ8、9、10、11の使用を必要とする.精製された単離物を得るためには多数のサブ培養工程が必要であるが、この方法は12、13、14の間にプラスミドの損失を引き起こす可能性があり、プラスミド媒介毒素遺伝子の検出に影響を与える可能性がある。イプシロン毒素遺伝子を含む。我々は、嫌気性室、瓶、または袋を使用せずにC.パーフリンゲンを選択的に培養する、より少ないサブ培養工程で、簡単な方法を開発しようとした。簡単に言えば、食品サンプルは一晩(ON)ラピッド・パーフリンゲンス・メディア(RPM)に接種され、その後、TSC寒天に「挟まれ」、ONにインキュベートされる。C.パーフリンゲンと疑われるコロニーは、次いでRPMにサブ培養され、再びオンにインキュベートされる。DNAを抽出し、PCRを行って遺伝子型を決定する(図1)。我々は、他のより標準的な媒体15と比較して、食品サンプルからのC.パーフリンゲン株の回復を増加させるために実証されているようにRPMを使用することを選びました。さらに、RPMは、MS患者4からB型ウイルスを産生するイプシロン毒素を単離することに成功した。元のバージョンの代わりに RPM の変更版を使用して、簡単に DNA 抽出を行います。この方法は、サンプル内の毒素遺伝子の容易な同定を可能にするが、個々のサンプルが複数のC.パーフリンゲントキシノタイプを含む可能性がある。本方法では複数回の精製を用いて精製株を単離しないため、1つのサンプルから複数のトキシノタイプを同定することは不可能です。しかし、標準的な精製技術(通常はTSCプレートまたは血液寒天プレートにストリーキング)は、精製培養を達成するために、私たちのプロトコルの最後に適用することができます。
注:C.パーフリンゲンは、バイオセーフティハザードレベル2(BSL2)生物と考えられています。すべての食品サンプルにC.パーフリンゲンが含まれるわけではありませんが、培養されたすべてのサンプルはそのように扱われるべきです。すべての適切な予防措置と人員保護装置(PPE)は常に着用する必要があります。廃棄前にすべての材料を除染してください。
1. 修正されたRPM4、15を準備する
2. サンプル収集とRPMインキュベーション
3. TSC 「サンドイッチ」メッキ
4. 亜硫酸還元コロニーのサブ培養
5. DNA抽出
6. PCRジェノタイピングによるC.パーフリンゲンの検出
この方法を使用して、私たちのサンプリング食品の15-20%は、C.パーフリンゲンのために陽性をテストします。ほとんどの菌株は、トキシノタイプAに対して陽性ですが、食品サンプル中のB型とD型の両方を検出することに成功しました。以前に発表された論文では、ニューヨークの小売店16(表3)から購入した合計216の食品サンプルをテストしました。これらのサンプルには、様々な肉サンプル(牛肉、子羊、豚肉、子羊)、家禽サンプル(鶏肉と七面鳥)、および魚介類のサンプル(タラ、サーモン、貝類、スナッパー、ヒラメ、イカ、ティラピア、マグロ、および他の様々な魚)が含まれていました。生産および乳製品のサンプルも試験した。216サンプルのうち、34(16%)C.パーフリンゲンズに対して肯定的であった。34 C. パーフリンゲン陽性サンプルのうち、31サンプル(91.2%)アルファ毒素を含む, 1 サンプル (2.9%)α、β、イプシロン毒素、および2つのサンプル(5.9%)アルファとイプシロン毒素を含んでいた。
興味深いことに、我々はまた、C.パーフリンゲンが胞子と比較して栄養細胞としてより一般的であることを発見しました。25サンプルを比較し、栄養C.パーフリンゲン細胞または胞子の存在について比較した。胞子は85°Cの熱衝撃サンプルにより15分間選択した。試験した25サンプルのうち、16%が栄養C.パーフリンゲン株に対して陽性であったのに対し、胞子は4%であった。これは、両方の代わりに栄養細胞のみをテストする方が費用対効果が高いことを示しています。
図 1: 手順の概要。
食品サンプルは、細分化され、無菌PBSに希釈されます。PBS食品サンプルの半分は、栄養細胞のために選択するためにRPMに接種されます。残りのPBS食品サンプルは、RPMで接種する前に胞子を選択するために15分間85°Cで熱ショックを受ける。培養物を37°Cでオンにインキュベートし、次いでTSC寒天にメッキする。TSC寒天は37°Cでオンにインキュベートされ、黒色、亜硫酸還元培養物は、新鮮なRPMにサブ培養される。サブ培養RPM培養は37°CでONインキュベートされ、DNAを抽出してPCRを介してジェノタイピングを行います。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図2:TSCアガーサンドイッチ技術の概略図。
C.パーフリンゲンス細菌を含有するRPM培地は、嫌気性環境を促進するためにTSC寒天の2層の間でめめ合う。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図 3: 選択した PCR 結果。
7種類の食品からのC.パーフリンゲンのジェノタイピング結果の画像、およびC.パーフリンゲンタイプBの陽性対照を示す。分子量はしご(各ゲルの第1レーン)を用い、PCR結果の大きさをベースペア(bp)に近似した。この図のより大きなバージョンを表示するには、ここをクリックしてください。
トキシノタイプ | アルファ | Beta | イプシロン | イオタ | Cpe | ネットB | |
確立 | A | + | - | - | - | - | - |
B | + | + | + | - | - | - | |
C | + | + | - | - | + | - | |
D | + | - | + | - | + | - | |
E | + | - | - | + | + | - | |
提案 | F | + | - | - | - | + | - |
G | + | - | - | - | - | + | |
+ プレゼント - 存在しない +/- 存在する場合と存在しない場合があります。 |
表1:C.パーフリンゲンのゲノタイプの概要各C.パーフリンゲン毒ノタイプによって生成される毒素の組み合わせのチャート。
ターゲット | プライマーペア | 期待される PCR 製品 (bp) |
アルファ | F: GCT AAT GTT ACT GCC GTT GA R: CCT CTG ATA CAT CGT GTA AG | 325 |
Beta | F: GCG AAT ATG CTG AAT CAT CTA R: GCA GGA アカ タ GTA TAT CTT C | 196 |
イプシロン | F: GCG GTG ATA TCC ATC TAT TC R: CCA CTT ACT TGT CCT ACT AAC | 655 |
16s RNA | F: アガ GTT TGA TCC TGG CTC A R: GGT TAC CTT GTT ACG ACT T | ~1300 |
表2:選択された毒素遺伝子のプライマーおよび期待PCR産物。PCR ジェノタイピングステップで使用されるプライマー。
食品タイプ | タイプ A | タイプ B | タイプ C | タイプ D | C. パーフ + | |||||||
アルファ毒素陽性 | アルファ、ベータ、イプシロン毒素陽性 | アルファとベータ毒素陽性 | アルファとイプシロン毒素陽性 | |||||||||
N | N | % | N | % | N | % | N | % | N | % | ||
肉 | 牛肉 | 38 | 8 | 21% | 1 | 3% | 0 | 0% | 0 | 0% | 9 | 24% |
子 羊 | 10 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
豚肉 | 15 | 2 | 13% | 0 | 0% | 0 | 0% | 0 | 0% | 2 | 13% | |
混合 | 1 | 1 | 100% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 100% | |
小計 | 64 | 11 | 17% | 1 | 2% | 0 | 0% | 0 | 0% | 12 | 19% | |
家禽 | 鶏 | 19 | 5 | 26% | 0 | 0% | 0 | 0% | 0 | 0% | 5 | 26% |
トルコ | 7 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
小計 | 26 | 5 | 19% | 0 | 0% | 0 | 0% | 0 | 0% | 5 | 19% | |
シーフード | タラ | 4 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
混合 | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
サーモン | 11 | 2 | 18% | 0 | 0% | 0 | 0% | 0 | 0% | 2 | 18% | |
棚 | 32 | 1 | 3% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 3% | |
鯛 | 4 | 3 | 75% | 0 | 0% | 0 | 0% | 0 | 0% | 3 | 75% | |
ヒラメ | 12 | 4 | 33% | 0 | 0% | 0 | 0% | 0 | 0% | 4 | 33% | |
イカ | 4 | 1 | 25% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 25% | |
ティラピア | 21 | 2 | 10% | 0 | 0% | 0 | 0% | 2 | 10% | 4 | 19% | |
マグロ | 3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
他 | 8 | 1 | 13% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 13% | |
小計 | 100 | 14 | 14% | 0 | 0% | 0 | 0% | 2 | 2% | 16 | 16% | |
乳製品 | 牛 | 3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
ヤギ | 4 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
ミルク | 3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
小計 | 10 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
生成 | 野菜 | 12 | 1 | 8% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 8% |
フルーツ | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
ハーブ | 3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
小計 | 16 | 1 | 6% | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 6% | |
合計 | 216 | 31 | 14% | 1 | 0.50% | 0 | 0% | 2 | 0.90% | 34 | 16% |
表3:216の食品サンプルにおける異なるC.パーフリンゲンの変性型の有病率。C.パーフリンゲンの小売食品をテストするためにこの方法を使用した場合に得られた結果の例.この表は、以前に公開された原稿 Regan et al.16から変更されています。
ここでは、サブ培養が限られており、嫌気性チャンバーシステムを使用せずに小売食品サンプルにおけるC.パーフリンゲンの有病率を同定する方法について説明する。この方法は、食品サンプルからのC.パーフリンゲンの同定を増加させるために技術の組み合わせを使用しています。RPMメディアの改変版を使用することにより、我々はC.パーフリンゲンの選択的な成長を可能にする。TSC寒天の層の間に接種されたRPMを挟むことで、C.パーフリンゲンに特徴的な嫌気性、亜硫酸還元細菌を同定し、単離することができる。C.パーフリンゲンの存在を確認するために、亜硫酸還元コロニーは、新鮮なRPMにサブ培養される。改変されたバージョンまたはRPMにより、培養物からDNAを容易に抽出することができ、特定の毒素遺伝子のPCR確認が可能になります。C.パーフリンゲン汚染食品サンプルの確認は3日以内に達成することができる。
初期の実験では、食品サンプルは単にON培養物から抽出されたRPMとDNAに接種された。この方法により、限られた数のサンプル(データは示さない)でC.パーフリンゲンが検出された。RPMはC.パーフリンゲンの成長に対して選択的であるが、C.パーフリンゲンの成長に排他的ではない。その他、グラム陽性、D-シコルセリン耐性細菌は、まだRPMで成長することができます。我々は、他の細菌種による汚染は、我々の最初のON RPM培養におけるPCR分析の感度を低下させることによって、C.パーフリンゲン株の検出を減少させたかもしれないと仮定した。C.パーフリンゲンの検出を増加させる重要なステップは、TSC寒天「サンドイッチ」技術を含めることでした。これにより、C.パーフリンゲンの特徴である嫌気性、亜硫酸還元コロニーを区別して選択することができました。このプロセスの重要なステップは、溶融TSC寒天の最上層が40°Cであることを保証することです。一部のC.パーフリンゲン株は、増加した温度(46-48 °C)15、16で成長することができますが、増加した温度で溶融寒天を加えた場合、回収された培養物の量を大幅に減少させ、主に細胞死による可能性が高い.
この方法にはいくつかの潜在的な制限があります。前述のように、RPMもTSC寒天もC.パーフリンゲンのみ選択または区別せず、食品サンプルに存在する他の細菌種の増殖を可能にする。これは、C.パーフリンゲンのみに対して選択するアッセイの感度を低下させる可能性がある。しかし、これはほぼすべての培養技術で一般的な制限です。精製された単離物の遺伝子タイピング確認は、C.パーフリンゲンおよび他の細菌種を決定的に同定するための最良の方法である。この研究のもう一つの制限は、精製された単離物をテストしないことです。繰り返しのサブキュア化がプラスミド損失をもたらすと恐れられているので、我々は意図的にサブキュアの量を制限するためにこれを行いました。我々は純度に分離しないため、複数のC.パーフリンゲン毒性型が同じサンプルまたはサブ培養に存在する可能性があります。研究者が精製された単離物を得たい場合、標準的な精製方法は、この方法で説明された最後のRPM培養物に使用することができます。これは通常嫌気性室の使用を必要とする。もともとC.パーフリンゲンを食品から分離するために使用されるが、この方法は、C.パーフリンゲンを識別し、多数のソースから分離するために使用することができる。具体的には、この方法のそのような応用の1つは、感染源をよりよく理解するために、C.パーフリンゲンに感染していると疑われるヒト(または動物)からの胎児サンプルを試験し、細菌を毒物に毒物を型化する。
開示なし。
この研究は、公的、商業、または非営利セクターから特定の資金を受け取っていませんでした。
Name | Company | Catalog Number | Comments |
D-Cycloserine | Sigma-Aldrich | C6880 | |
Dextrose | Sigma Life Science | D9434-250G | |
Disposable Transfer Pipets | any brand | Select one with slim tip like Thermo Scientific Disposable Transfer Pipets 137116M/EMD | |
DNeasy Blood & Tissue Kits | Qiagen | 69504 | Note: numerous DNA and plasmid extractions kits were evaluated, this kit gave the most desirable results. |
Dry Incubator | any brand | ||
Fluid thioglycolate medium | Remel | R453452 | |
Gelatin from porcine skin | Sigma Life Science | G1890-500G | |
Individual Primers | Invitrogen | ||
Iron (II) sulfate heptahydrate | Sigma Life Science | F8633-250 G | |
Lysozyme from chicken egg white | Sigma-Aldrich | L6876 | Needed for DNA extraction, not provided in kit |
microcentrifuge tube | any brand | ||
parafilm or plastic wrap | any brand | ||
Peptone from casein and other animal proteins | Sigma-Aldrich | 70173-100G | |
Perfringens Agar Base (TSC + SFP) | Oxoid | CM0587 | Make TSC agar according to instructions |
Potassium phosphate dibasic | Sigma-Aldrich | P2222-100G | |
Sodium chloride | Sigma-Aldrich | S-7653 | |
Sterile Cell Scraper | any brand | ||
Sterile cell Spreader | any brand | ||
Sterile petri dishes | any brand | ||
Supplies and equipment for gel electrophoresis | any brand | ||
table top centrifuge | any brand | ||
Taq PCR Master Mix Kit | Qiagen | 201443 | |
Thermocycler for PCR reaction | any brand | ||
water bath | any brand | ||
Yeast extract | Sigma-Aldrich | 70161-100G |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved