Method Article
このプロトコルは、単一セル分解能を達成することができる統合ラマン分光質量分析(MS)プラットフォームを提示します。ラマン分光法は、薬物に対する細胞応答を研究するために使用することができ、MSは薬物の取り込みと代謝の標的および定量的分析に使用することができます。
細胞は、薬物に対する反応において本質的に異種であることが知られている。したがって、単一細胞の不均一性が創薬研究において考慮される必要がある。これは、細胞と薬物間の細胞相互作用の多くを単細胞レベル(すなわち、薬物の取り込み、代謝、および効果)で正確に測定することによって達成することができる。本論文では、薬物に対する細胞の代謝変化をモニタリングする単一細胞ラマン分光法および質量分析(MS)プラットフォームについて述べている。このプラットフォームを使用して、薬物に応答する代謝変化はラマン分光法によって測定することができ、薬物およびその代謝産物は同じ細胞内の質量分析法を用いて定量することができる。この結果は、薬物の取り込み、代謝、および応答に関する情報に単一細胞レベルでアクセスすることができることを示唆している。
細胞は、単一細胞レベルでの微小環境の変化に対して異なる反応を示し、細胞不均一性1と呼げられる現象である。それにもかかわらず、現在の創薬研究は、潜在的な部分集団に関する情報と単一細胞変動に関する情報を難読化する細胞集団の平均測定値に基づいています。この欠落した情報は、一部の細胞が薬物の影響を受けやすい理由を説明し、他の細胞は耐性を持っています。興味深いことに、薬物応答に関する単細胞情報の欠如は、薬物3の第II相臨床試験の失敗の考えられる理由である。したがって、この問題に対処するには、薬物との細胞相互作用(すなわち、取り込み、代謝、および応答)を単一細胞レベルで測定する必要があります。
これを達成するために、我々は、生きている単一細胞がラベルフリーのラマン分光法を使用してスクリーニングされ、質量分析4を使用してさらに特徴付けられるユニークなシステムを設計した。ラマン分光法は、細胞状態の分子指紋を提供し、細胞内の多くの分子の寄与から生じる複雑なスペクトルである。この複雑さにもかかわらず、ラマン指紋は細胞全体の構造と代謝5、6を反映していると考えることができる。ラマン分光法は、非侵襲的で比較的高いスループットの方法で細胞状態を測定することに優れており、単一細胞レベルでの薬物応答のスクリーニングと評価に有用です。
対照的に、MSは単一細胞レベルで薬物の取り込みを測定するために必要な感受性および選択性を提供する。MSは破壊的であるため(サンプル[cell]は通常、分析中に消費されます)、非破壊的なラベルフリーのラマン分光法と統合することで、高スループットと感度の高いシステムを提供できます。この組み合わせプラットフォームは、単一細胞レベルでの薬物の取り込み、代謝、および効果に関するより多くの情報を提供することができます。
この原稿は、統合されたRaman-MSプラットフォームを使用して、in vitro培養を使用して単一細胞レベルで薬物との細胞相互作用を研究するために使用されるプロトコルを解明する。そのために、肝細胞癌細胞(HepG2)およびタモキシフェンがモデルとして用いられる。HepG2細胞はタモキシフェンを取り込んで薬物を代謝するので選ばれ、肝毒性の影響を同時に受ける。この原稿では、薬物処理細胞と非処理細胞(対照)の2つの状態が使用されています。
1. 細胞培養
2. 薬物治療
3. ラマンスペクトルイメージングとスペクトル処理
注:ラマン分光システムは市販されていますが、ここで使用されるラマン分光システムは、前述の7、8で説明した家庭用ライン走査共焦点顕微鏡です。簡単に言えば、このシステムは532 nmダイオードポンプソリッドステートレーザーが装備されています。レーザー光は円筒レンズを使用して平面に形成され、1回の露光で400スペクトルの測定が可能です。ラマンスペクトルは、指紋領域のスペクトル分解能を最大化するために1,200の溝/mmグレーティングを使用するポリクロメータに取り付けられた冷却されたCCDカメラを使用して記録されました(500-1,800 cm-1から)。このスペクトル領域には、ラマン散乱を発生させる分子に特異的な周波数の高密度が含まれています。水浸物レンズ(NA = 0.95)も使用します。このシステムの空間分解能は~300nmで、スペクトル分解能は1cm-1です。実験中に細胞の生存を確実にするために、電動顕微鏡ステージに固定されたマイクロチャンバーが使用される。
4. スペクトルデータの前処理と多変量解析
注: 前処理は、スペクトル データ内の不要な技術的なバリエーションを削除するために、追加の分析の前に必要な手順です。メソッドとソフトウェアの多様性のために、網羅的なリストを提供することはできませんし、文献7、8に見られる多くの有用なレビューがあります。このセクションでは、生きている単一細胞から得られたスペクトルラマンデータの解析と解釈に使用されるアプローチについて簡単に説明します。
5. 単一セルサンプリングのセットアップと手順
6. 質量分析測定
7. 質量分析データの処理と分析
メモ:任意の適切なソフトウェアを使用してデータ分析を実行できます。ただし、研究者が MS ベンダーから提供されていないソフトウェアを使用してデータ分析を実行する場合は、生データを独自のベンダー形式からオープン形式に変換するか、最初にテキスト ファイルとして変換する必要があります (ここでは行いました)。
薬物相互作用(取り込み、代謝、および効果)の単細胞分析は、隠れた部分集団や薬剤耐性の部分集団を明らかにするだけでなく、細胞の不均一性の影響を理解するために不可欠です。このプロトコルでは、ラマン分光法とMS.ラマン分光法の2つの相補的な技術を単一細胞で測定するために使用された:ラマン分光法とMS.ラマン分光法は、薬物応答のスペクトルバイオマーカーに基づいて薬物の影響を受ける細胞を迅速に識別する。MSは、選択的かつ半定量的に薬物の取り込みと代謝を監視するために使用されます。細胞を最初にラマン分光法でスクリーニングし、次いでMSによる分析のために個別にサンプリングした。
各状態の平均スペクトル(薬物治療の有無)の比較分析を図2に示す。2つの条件の平均スペクトルは、以前に同定され、分子化合物2に割り当てられた様々なピークで明らかに異なる。特に、1000cmのピーク−(フェニルアラニンおよびチロシンなどの芳香族化合物に割り当てられる)は強い違いを示す。統計的差の有意性は、さらなる多変量解析によって評価されるべきである。
その後、データ・セットを使用して、2つの細胞治療(薬物:n=290、薬物なし:n=115)を区別することを目的としたPLSモデル(ステップ4.5〜4.8)を訓練しました。タモキシフェンの存在下で培養された細胞を分類する予測能力は、試験データにおいて100%の感度と72%の特異性に達した(交差検証されたトレーニングモデルからは不明)。感度はモデルによって正しく識別される真の正の尺度であり、特異性はモデルによって識別される実際の負の尺度です。SVM、LDA、ニューラルネットワークなどの代替モデルは、同様またはより良い結果を提供する可能性がありますが、この研究では包括的な比較は行われていない。
PLSモデルに基づいて、実験条件を判別する際の波長(ラマンシフト)の重要性を表すVIPスコアが計算されました(図3)。重要なことに、VIPプロファイルの最高ピークは、2つの治療の間に強い違いが見られたラマンピークに対応しました。これにより、処理された細胞と未処理細胞の特異的な分子差が確認された。その結果、研究者は、薬物治療に対する単一細胞の応答を反映する可能性のあるスペクトルバイオマーカーを同定することができる。これらのバイオマーカーは、様々な条件および細胞株にわたる生物学的関連性および一般化を検証するためにさらに試験することができる。
生きた単一細胞質量分析(LSC-MS)システムは、ラマン分光法によって以前に測定された単一の薬物処理HepG2細胞で薬物とその代謝産物の両方を検出することができた。加えて、タンデムMSは、両分子の構造を確認するために使用され得る。陽性同定後、薬物とその代謝産物の相対的な豊富度を各細胞で測定し、未処理細胞のバックグラウンドピークと比較した。タモキシフェンの存在量に強い変動が認められ、代謝産物4-OHTの場合には、この現象がさらに顕著であった(図4)。タモキシフェンの存在量とその代謝産物との関係も研究され、両者の間に有意な正の相関が見られた(r = 0.54, p = 0.0001, n = 31)。
図1:顕微鏡ステージに取り付けられた細胞ピッキングシステム。この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:薬物処理細胞の平均スペクトル(タモキシフェン:n=295)および未処理細胞(タモキシフェンなし:n=115)。ラマンのピークは文献から同定することができる。強いスペクトル差のほとんどは、前に説明したように統計的に有意である(ANOVA, p ≤ 0.5)。この図は、以前の文書4から変更されています。この図の大きなバージョンを表示するには、ここをクリックしてください。
図 3: 予測 PLS モデルから抽出された VIP スコアVIP スコアは、モデル内の 2 つのクラスの区別に寄与する波長を反映します。ピークのほとんどは、薬物処理細胞に対する薬物効果のスペクトルバイオマーカーとして観察される特定の分子に対応しています。この図は、以前の文書4から変更されています。この図の大きなバージョンを表示するには、ここをクリックしてください。
図4:タモキシフェンの存在量とその代謝産物の分布タモキシフェンの存在量とその代謝産物の分布は、未処理細胞における内因性ピークと比較して4-OHT(単一細胞レベルで測定される)(対照)である。この図は、以前の文書4から変更されています。この図の大きなバージョンを表示するには、ここをクリックしてください。
この原稿では、HepG2細胞をタモキシフェンに曝露する(または露出しない)単純なケースを選んだ。ラマン分光法および質量分析システムの能力は、細胞に対するタモキシフェンの影響を監視するために実証されています。ラマン分光法は、薬物暴露に対する単一細胞の一般的な応答を反映する潜在的なバイオマーカーの同定を可能にした。単一細胞間のいくつかの不均一性が観察され、いくつかの細胞が薬物暴露に反応しなかったことを示唆した。一方、LSC-MSは、薬物とその代謝産物の高いレベルで、薬物およびその代謝産物の存在量において高い不均一性が認められた単一細胞レベルで薬物とその代謝産物の標的分析を行うことができる。この不均一性は、一部の細胞が薬物の影響を受ける理由を説明するのに役立ちますが、他の細胞は、おそらく均一な集団12に由来する細胞にもかかわらず、一見そうではありません。
注意が必要なこの技術の特定の側面の中で、データの再現性を確保するために顕微鏡のセットアップと信号処理の品質を評価することが重要です。スペクトルの前処理を慎重に行う場合は、信号の変動を各ピークの局所最大値で最大化する必要があります。対照的に、スペクトルのベースラインとエッジは、テストされたセル条件の間で重なる必要があります。もう一つの重要な側面は、治療間の違いを調べるために使用される多変量モデルです。正確で正確な解析を確実にするために、モデルとモデル パラメータを慎重に評価する必要があります。PLSモデルの利点の1つは、ニューラルネットワークとは異なり、モデルによってテストされた条件を最もよく区別する各波長(ラマンシフト)に関連する重みへのアクセスが可能にすることです。
ラマン分光法は薬物応答の判別に成功したにもかかわらず、この技術は生物学的解釈を提供するためにその使用に限定されることを強調すべきである。これは主に、何千もの分子の混合物を包含するスペクトル信号の複雑さによるものです。したがって、ラマンスペクトル強度と薬物濃度の変動との間の系統的変動を評価するために、さらなる調査が必要である。また、タモキシフェンに関連するスペクトルバイオマーカーの一般化を評価するためには、他の細胞株の同様の研究が必要である。
さらに、薬力学を評価し、各細胞内で薬物がどのように浸透し、流れるかを研究するために、生体組織の測定を行うことが興味深いかもしれません。さらに、LSC-MSにおけるサンプリング工程はオペレータの技量に大きく依存していることに留意すべきである。空間分解能、サンプリング後の毛細血管内の細胞位置、スループット強度などのパラメータは完全にオペレータに依存するため、LSC-MSの大規模な採用が制限されます。ただし、自動サンプリング システムによってこの問題が軽減される場合があります。さらに、LSC-MSは、天然の状態で付着細胞または浮遊細胞のサンプリングに優れていますが、組織切片に埋め込まれた細胞のサンプリングにおいては、よりパフォーマンスが低くなります。これは、サンプル密度が高い場合に、サンプリングキャピラリー先端が破損する傾向があるためです。従って、単一プローブのような別のアプローチは、そのような場合には14、15より適し得る。
ここで使用される細胞は最小限のサンプル調製で周囲条件でサンプリングされるため、LSC-MSは、このプロトコルにおけるラマンとの統合によって示されるように、他の技術と容易に統合することができます。3Dホログラフィーとの別の同様の統合は、細胞下レベル16で細胞代謝産物の絶対定量を達成することを可能にした。さらに、フローサイトメトリーとの統合は、神経芽細胞腫癌患者17、18の単一循環腫瘍細胞における代謝バイオマーカーの解明を可能にした。
将来的には、イメージングモダリティ19からのデータセットの組み合わせへの関心が近年高まっているため、積分計算アプローチを用いてラマン信号と質量分析結果(他のオミックス法)との間の系統的変動を調べるのも興味深い。興味深いことに、我々はすでにVIPスコアによって同定されたラマンピークの強度とMS4によって同定された単一細胞レベルでのタモキシフェンまたはその代謝産物の豊富さとの間にいくつかの弱いが有意な線形相関を発見した。このデータは、MSプロファイルとラマンスペクトルとの間の代謝関係とこれらの値を予測する可能性を示唆している可能性がある。
著者は利益相反を宣言しない。
著者らは、ヤルノ・ゲルモンド博士に帰属するヤナギダ俊夫氏の支援と理化学研究所の内部協力資金に感謝する。
Name | Company | Catalog Number | Comments |
0.1% penicillin-streptomycin | Nacalai Tesque | 09367-34 | |
35mm glass bottom grid dish | Matsunami | ||
4-Hydroxy Tamoxifen standard | Sigma-Aldrich | 94873 | |
532 nm diode pumped solid-state laser | Ventus, Laser Quantum | ||
BIOS-L101T-S motorized microscope stage | OptoSigma | ||
CT-2 cellomics coated sampling capillaries | HUMANIX | ||
d5-Tamoxifen standard | Cambridge Isotope Laboratories | ||
Dimethyl sulfoxide LC-MS grade | Nacalai Tesque | D8418 | |
Dulbecco's Modified Eagle's medium | Sigma-Aldrich | D5796 | |
Eppendorf GELoader tips | Eppendorf | ||
fetal bovine serum | Hyclone laboratories | SH3006603 | |
FluoroBrite DMEM | Thermo Fisher Scientific | ||
Formic acid LC-MS grade | Sigma-Aldrich | 33015 | |
HepG2 cell line (RCB1886) | RIKEN cell bank center | RCB1886 | |
MC0-19A1C Incubator | Sanyo Electric Co. | MC0-19A1C | |
Methanol LC-MS grade | Sigma-Aldrich | 1060352500 | |
MMO-203 3-D Micromanipulator | Narshige | MMO-203 | |
NA:0.95, UPL40 water-immersion Olympus objective lens | Olympus | ||
Nanoflex nano-ESI adaptor | Thermo Fisher Scientific | ES071 | |
On-stage incubator | ibidi | ||
Pierce LTQ Velos ESI calibration solution | Thermo Fisher Scientific | 88323 | |
PIXIS BR400 cooled CCD camera | Princeton Instruments | ||
Q-Exactive Orbitrap | Thermo Fisher Scientific | ||
Rat-tail collagen coating solution | Cell Applications Inc. | ||
Tamoxifen standard | Sigma-Aldrich | 85256 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved