JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

インビボイメージングは、神経系の発達の根底にある細胞メカニズムを調査するために使用できる強力なツールです。ここでは、開発中のゼブラフィッシュ神経系の中で、多色Brainbow標識細胞をリアルタイムに可視化するために、タイムラプス共焦点顕微鏡を用いる手法について説明する。

要約

脊椎動物神経系の発達には、複雑な細胞行動と相互作用の正確な調整が必要です。高分解能in vivoイメージング技術を用いることは、生物におけるこれらのプロセスに明確な窓を提供することができる。例えば、細胞とその子孫の分裂は、神経系が形成するにつれてリアルタイムで追跡することができる。近年、多色技術の技術の進歩は、調査できる質問の種類を拡大しています。多色Brainbowアプローチは、細胞の間で区別するだけでなく、それぞれが1つの前駆細胞から派生する関連する細胞の複数の異なるクローンを色分けするためにも使用できます。これにより、開発中に多くの異なるクローンとその動作を同時に多重系統解析できます。ここでは、開発中のゼブラフィッシュ神経系の中で、多色Brainbow標識細胞をリアルタイムで可視化するために、タイムラプス共焦点顕微鏡を使用する技術について説明します。これは、従来のプロモーター駆動色を使用して差し分化ラベルを付け難い細胞間の細胞相互作用に従う場合に特に有用である。このアプローチは、複数の異なるクローン間の系統関係を同時に追跡するために使用できます。この手法を使用して生成される大規模なデータセットは、遺伝的または薬理学的操作全体で定量的に比較できる豊富な情報を提供します。最終的に生成された結果は、神経系がどのように発達するかについての体系的な質問に答えるのに役立ちます。

概要

開発の初期段階では、特殊な前駆細胞のプールが増殖ゾーンで繰り返し分裂し、多様な娘細胞を産生する。この発達期に生まれた細胞は、分化し、新生器官を形成するために移動します。神経系では、放射状グリアなどの前駆物質は、心室領域の未熟なニューロンを生じさせる。ニューロンが心室から離れて成熟するにつれて、膨張する組織は最終的に脳11、2、3、4、5、62,3,4,5の非常に複雑な構造6形成する。ニューロンの前駆体の分裂と分化と移動との間の調整は、脳の最終的な大きさ、形状、したがって機能を決定し、行動77、8、9、108,9,10に直接影響を与える。これらのプロセスを厳しく制御することは、正常な脳の発達にとって明らかに重要ですが、これらのダイナミクスを調節するグローバルメカニズムはよく理解されていません。ここでは、細胞分解能で神経系の発達を研究するツールを説明し、研究者はBrainbowで発達中のゼブラフィッシュ脳の生体内の前駆細胞およびニューロンを視覚化し、時間経過共焦点顕微鏡11を介して時間をかけてその行動を追跡することを可能にする。このアプローチは、発達中の胚の他の部分を視覚化するためにも適応することができる。

開発中のゼブラフィッシュ脳の細胞間を観察し、区別するために、我々はBrainbow細胞標識技術11を適応させました。Brainbowは、3つの異なる蛍光タンパク質(FP)の無作為に決定された組み合わせ発現を利用して、細胞の集団にラベルを付けます。Brainbow発現のデフォルトの発現は赤FPdTomatoであるが、酵素Creリコンビナーゼによる再結合は、mCerulean(シアン蛍光タンパク質、CFP)または黄色蛍光タンパク質(YFP)12,13,13の発現をもたらす。細胞内で表現される各FPの結合量は、それに固有の色合いを与え、隣接する細胞から明確な視覚的な区別を可能にする。さらに、前駆細胞が分裂すると、各娘細胞は母細胞から色を継承し、色分けされたクローンを産生し、研究者が細胞系11,14,14を追跡することを可能にする。もともとマウス12の神経回路を解析するために使用されるが、Brainbowは、ゼブラフィッシュ15を含む多種多様なモデル生物で発現されている。

私たちの技術は、生きているゼブラフィッシュで時間の経過とともに複数の色分けされたクローンを直接画像化するための以前の多色ラベリングとイメージング方法に基づいています。胚としての光学的透明性のために、ゼブラフィッシュはイメージング実験,16に適しており、以前の研究では、ゼブラフィッシュのBrainbowを利用して、,神経系11、15、17、18、19、20、21、22、23、24、25を含む様々な組織18,19,20,2111,15,172324,25研究してきました22,2626、27。,生物を直接画像化する能力は、彼らの急速な元子宮の開発と共に、ゼブラフィッシュを脊椎動物の発達の貴重なモデルにします。哺乳動物の脳とは対照的に、ゼブラフィッシュ後脳の増殖帯全体が、その内因性環境6に中断することなく画像化のために容易に利用できる。これにより、インビトロや固定組織製剤ではなく、生体内で実験を行うことができます。固定画像実験とは対照的に、in vivoの研究では縦方向の設計が可能になり、パターンについて分析できる時間のデータが生成され、比較的まれな事象を観察する可能性が高くなります。関心のある事象の速度と長さに応じて、研究者は短い(1-2時間)または長い(〜16時間まで)のタイムラプスイメージング実験を行うことを選択できます。ゼブラフィッシュヒートショックプロモーター70(hsp70,hsp)を用いることで、Brainbow発現を28,29,29に時間的に制御することができる。さらに、このプロモーターによって誘導されるモザイク表現は、多くのクローン11の標識および追跡に適している。

生きている脳内の複数のクローンを視覚的に識別する能力は、この方法の利点です。神経系の発達中のクローンの役割を調査した重要な以前の研究は、単一のFPまたは他の容易に視覚化されたタンパク質を使用して、単一の前駆細胞とその子孫を標識するためにレトロウイルスベクターを利用した。このようなラベリングは、インビトロまたはin vivo,,,,,,22、30、31、32、33、34、35、36、37、3830,31のいずれかで、時間をかけて単一のクローン333738観察することができます。323435361つのクローン内の細胞の挙動を追跡する方法とは対照的に、Brainbowの異なる色は、研究者がクローン間のダイナミクスを観察することを可能にする。さらに、Brainbowを使用して脳内の多くのクローンにラベルを付け、クローンの挙動に関する追加データが、単一クローン11にラベルを付ける技術に関連して収集される。重要なことに、ここで説明するアプローチは、異なる遺伝的または薬理学的操作を受けた魚間の発達的比較を生成するために拡大することができる18。全体的に見て、これらの利点は、脊椎動物神経系の発達を探求する研究者、特にクローンの役割に興味を持つ研究者にとって理想的なBrainbow発現ゼブラフィッシュのインビボ共焦点イメージングのタイムラプスを作る。

プロトコル

動物の被験者を含む手続きは、ルイス&クラーク大学の制度的動物のケアと使用委員会(IACUC)によって承認されています。

1. ゼブラフィッシュ胚の微小注入

  1. マイクロインジェクション39、40,40を行う前の午後、野生型、大人のゼブラフィッシュをセックス分離交配タンクに設置する。
  2. マイクロインジェクションの朝にDNA溶液を調製する。希薄hsp:ゼブラボウ11プラスミドDNAは、0.1 mM KCl中の約10ng/μLの濃度に、フェノールレッド2.5%および3.75U Creリコンビナーゼ酵素を有する。
  3. 受精39,41の45分以内に1細胞ゼブラフィッシュ胚へのDNA溶液のマイクロインジェクション41行う。この溶液の約4.2 nLを各胚に注入し、プラスミドDNAの約42pgに相当する。
    注:Tg(ubi:Zebrabow) 15 や Tg(neurod:Zebrabow) Tg(neurod:Zebrabow)18など、代わりにトランスジェニックで Brainbow 発現型ゼブラフィッシュラインが交尾した場合、マイクロインジェクションステップは省略できます。15マイクロインジェクションを行うと、研究者がコピー数とラベリング密度を正確に調整できるため、有利です。さらに、特定の遺伝子産物をタグ付けまたは操作する第2のDNA構築物は、必要に応じてBrainbowと一緒に注入することができる(例えば、Brainbow18を補う極赤蛍光タンパク質)。
  4. 28°CインキュベーターでE3培地39のペトリ皿に注入された胚を24時間維持する。

2. ボンボーの表現を誘発する熱ショック

注:プラスミドDNAを注入するか、または発現したトランスジーンがhsp70プロモーターを利用して発現を駆動しない場合、ヒートショックステップをスキップすることができ、そして健康な胚は受精後24時間(hpf)でフェニルチオ尿素(PTU)に直ちに移すべきである。

  1. 24 hpfでは、注入された胚のグループから死んで変形した胚をカリングする。その後、健康な胚を50 mLチューブに移し、最大20個の胚/チューブを使用します。
  2. チューブに10 mLのE3を充填します。各チューブの上にキャップを置きますが、しっかりと閉じないでください。
  3. 50 mL チューブを含むチューブラックを37°Cの水浴に直立させます。浴中の水位がチューブ内のE3のレベルよりも高いことを確認し、80〜90分間放置します。
  4. 水浴から胚を取り出したチューブラックを取り外し、28°Cインキュベーターを直立に戻します。E3が冷却し、胚が徐々に温度に再順応するために1時間まで許す。次いで、胚の色素沈着を防ぐために、インキュベーターで温めたE3中の0.2 mM PTUのペトリ皿に胚を移す。
    注意:PTUは、注意して取り扱い、適切に処分されるべき有毒な化学物質です。手袋を着用することをお勧めします。

3. Brainbow発現のための胚のスクリーニング

  1. ヒートショック後2~4時間で、標準的な蛍光解剖顕微鏡で、Brainbow組み換えの成功を示すCFPまたはYFPの発現について、胚を調べる(dTomatoのデフォルト発現から)。
    注:複数の蛍光フィルターオプションが利用可能な場合、CFPのスクリーニングは、よく再結合された魚を識別するための最も効率的な方法です。CFPおよびYFPフィルターが利用できない場合、YFPはスペクトルプロファイルの重複により緑色蛍光タンパク質(GFP)フィルタの下で薄暗く可視化することができます。
  2. 全体に堅牢なFP発現を有する胚を選択し、PTUと別の皿に移す。受精後1日(dpf;28hpf以降)における画像胚、またはPTUおよび画像で2または3dpfで胚を維持する。

4. インビボイメージング用の胚の取り付け

  1. 実験の日に先立って、イメージングチャンバーと胚操作ツールを準備します。
    1. 慎重に60ミリメートルペトリ皿の中央にプラスチックリングをスーパールすることによって、イメージングチャンバーを準備します。
    2. 必要に応じて、カスタムメイドの胚マニピュレータを用意して、皿の中で胚を移動させ、取り付け中に胚を配向します。●長さ~4本にカットされた木綿棒の端まで、ナイロン釣り糸の長さ(〜1/2インチ~6ポンド)を重畳してマニピュレータを構築します。
  2. 必要に応じて(すなわち、2dpfまたはそれ以前での撮像)、解剖顕微鏡下でシリンジを用いて胚をデコリオネートに取り付ける前に。
  3. ゼブラフィッシュ胚を麻酔する。
    1. 60 mm ペトリ皿を E3 で半分に充填し、5~6滴の 4 mg/mL MS-222 Tricaine-S を 0.2 mM の最終濃度に加えます。混ぜ合わせる。
      注意:トリケーヌは注意して取り扱い、適切に処分する必要があります。
    2. PTUからトリケーヌ溶液に胚を移し、できるだけ少ないPTUが移送されることを保証する。魚の反射は1〜2分後に停止する必要がありますが、トリケーヌに胚を最大10分間放置して、タイムラプスイメージング実験のための徹底的な麻酔を確実にします。
    3. 胚が適切に麻酔されていることを確認します。胚の尾を胚マニピュレーターで優しく触れることで、驚くべき反射を評価します。反射運動が観察された場合は、可能な限り胚から遠く離れた皿にトリカインの追加滴を追加し、混合するために渦巻きます。胚の心拍数を解剖スコープで観察する。異常に遅い場合は、皿にE3の追加の滴を加えてトリケーヌ濃度を下げます。
  4. アガロースに麻酔をした胚をマウントします。
    1. 撮影室内のプラスチックリングの中心に魚を移し、細かいチップ転送ピペットを使用してできるだけ多くの余分なE3を取り除きます。
    2. クリーントランスファーピペットを使用して、42°Cに保存されたE3で1.0%低溶融アガロース(LMA)で魚を覆い、藻類の薄い層でプラスチックリング全体を充填します。トランスファーピペットを使用して、胚をピペットチップに静かに引き上げ、気泡を導入することなくアガロースに戻します。
    3. アガロースが硬化する前に、すぐに魚を適切に向けるために胚マニピュレータを使用してください。直立顕微鏡でイメージングする場合は、できるだけアガロースの上面に近い胚を配置します。胚を撮影室の底に平行に位置付け、尾をまっすぐにします。
      注:後脳イメージングの場合、胚は、後頭または矢状のビューに配置することができます。アガロースがまだ液体である間、胚の頭部が沈まないように注意する必要があります。他の向きは、イメージングのために他の現像組織を標的にするのに適している可能性がある。逆顕微鏡の場合、取り付けは異なる方法で行われ、通常はガラス底のペトリ皿の底に近い場所に魚を配置します。
  5. アガロースが硬化するのを待ってから、イメージングチャンバーをE3で満たします。イメージングの過程で蒸発を考慮して、できるだけ多くのE3を追加します。

5. ゼブラフィッシュ・ヒンドブレインの開発におけるタイムラプス共焦点イメージング

  1. イメージングに備えて、画像化チャンバーを共焦点顕微鏡に置きます。
    1. 共焦点顕微鏡に魚とE3とイメージングチャンバーを置きます。
    2. 20x 水浸し目標(1.0 NA)など、高い開口と長い作業距離を持つ目的を選択します。
    3. 対象のセルタイプの適切に密で明るいラベル付けの領域を見つけます。
      注:顕微鏡上の温度制御されたステージ/装置は、長いイメージングセッション中の温度と湿度を調節するためにも使用できます。これにより、蒸発を減らすことができる。
  2. Brainbow イメージングの取得パラメータを設定します。
    1. 各 FP チャネルを順番にイメージ化します。商用ソフトウェア(例えば、Zenソフトウェア)を使用する場合、これは3つの「トラック」を準備することによって行われます。アルゴンレーザーを使用してCFPを458 nmで、YFPを514 nmで励起します。DPSS 561 nmレーザーを使用してdTomatoを励起します。CFP の場合は 463 ~509 nm、YFP の場合は 519 ~555 nm、dTomato の場合は 566 ~691 nm の間の排出量を収集します。
    2. 画面上のディスプレイの場合は、CFP を青、YFP を黄色、dTomato を赤で指定します。
      注:これらの設定は、レーザーラインやその他の機能が共焦点顕微鏡で利用できる場所によって異なります。イメージングの速度を上げるために、CFPとdTomatoチャンネルを、ブリードスルーを確認することなく同時に画像化することができます。遠赤色 FP など、別の FP もイメージされている場合は、これを YFP と順番に、または同時にイメージできます。
    3. 16 ビット イメージを 1024 x 1024 以上の解像度で、平均を 2 回行う場合は、一般的なイメージング パラメータを設定します。対象の領域と細胞の種類に応じてズームを調整します(つまり、20倍の目的を持つ後脳イメージングの場合、ズームの範囲は1.0~2.5です)。時間をかけて魚の成長を可能にするために視野を最大化します。
    4. 一度に1つのトラックを表示する(および、他のレーザーをオフにして、光の漂白を防ぐ)、各FPの取得設定を個別に最適化します(例えば、レーザーパワー、ピンホールサイズ、フォトマルチプライヤーチューブゲインなど)。
    5. [Z スタック範囲からイメージまで]を選択します。
      注:長いイメージングセッション(>2時間)では、魚がイメージングの過程を通じて成長し続けることを考慮に入れ、したがってXYフィールドとZスタック範囲の両方がこれを余分なスペースで説明する必要があります。後脳を撮像する場合、画像化期間中に組織がロストリーに移動するための領域を含む。Z 次元の成長のためにスペースも含める必要があります。対象領域の約 10 ~ 20 μm の画像に含めます。
  3. タイムラプスイメージングのパラメータを設定します。
    1. 時間間隔を選択します。インターバル長は、発達中の後脳における有糸およびアポトーティック事象を追跡するために10〜30分の範囲である。間隔の長さは、対象となるイベントの速度と、単一の Z スタックのキャプチャにかかる合計時間によって異なります。
    2. イメージング セッションの長さを選択します。タイムラプスイメージングセッションは一般的に一晩で発生し、少なくとも16時間持続することができます。
  4. 実験を実行します。
    注:
    魚はイメージングの直後に安楽死させたり、注射器を使用してアガロースから慎重に解剖し、E3に戻して回復することができます。回収された魚は、後の時点で再び画像化することができますが、全体的な成長のためにこの期間中に細胞の位置と深さがシフトします。

6. タイムラプスファイル管理

  1. イメージ ファイルを解析ソフトウェアにインポートします。
    1. Zenソフトウェアを使用している場合は、画像取得が完了したら.czi形式でファイルを保存してください。フィジー42および/または他のソフトウェアと互換性のある形式で生データを保存してください。
    2. バイオフォーマット輸入者を使用してフィジーのソフトウェアにインポートします。
      注:タイムラプスファイルは大きく、分析のために開くためにかなりの時間とメモリが必要になる可能性があります。したがって、保存および開く方法に戦略的であることが役立ちます。目で興味のあるイベントを検索するために、より簡単に開くことができる低品質のバージョンを保存すると便利です。
  2. フィジーを使用する場合は、タイムラプスファイルの小さく、より管理しやすいサブセットを作成します。時間(例えば、最初の時点で完全なZスタックを表示する)または深さ(例えば、各時点で最初の50 Zセクションを表示する)でサブセットを生成するには、Image|スタック|ツール|サブスタックを作成します。

7. Brainbow画像の定量的なクローン色分析

  1. フィジーの対象セルの平均赤、緑、青 (RGB) の強度値を測定します。
    注:
    これらの手順は、フィジーでの画像解析に固有のものです。しかし、研究者は代替ソフトウェアプログラムで平均RGB強度値を得ることを好むかもしれません。
    1. 画像のエッジの周囲に黒いスペースがないように、ファイルが正しくトリミングされていることを確認します。黒いスペースは、解析に必要な最小強度の測定値を人為的に下げます。ファイルをトリミングする必要がある場合は、[矩形選択]ボタンを選択し、すべての黒いスペースを除いて、視野の周囲に関心領域(ROI)を描画します。[イメージ |作物.
    2. 平均値、最小値、最大グレー値の測定値を測定する測定ツールを設定します。[分析]をクリックします。測定値を設定します。[最小と最大値グレーの値] と [平均グレー値]のチェックボックスが両方ともオンになっていることを確認します。
    3. フィジーで生データファイルまたはサブセット化されたZスタックを表示すると、クローン色分析に関心のあるセルを見つけることができます。後脳では、推定クローンは、その放射方向と同様に、共有色合いによって視覚的に識別することができる。別の色の隣接するセルと密接に接触し、解決が困難なセルを選択しないでください。彼らの色合いを定量化することは困難かもしれません。
    4. Z-スクロールバーを使用して、対象セルの中心Z平面を見つけます。楕円選択ボタンを右クリックし、楕円選択ボタンを選択します。その他の選択ツールは、さまざまなセルタイプに適しています。セル本体の中心~2/3の周りに楕円ROIを描きます。
    5. Cスクロールバーを使用して、赤い(dTomato)チャンネルを選択します。[分析] を選択して、このチャネルの平均強度の測定を行います。測定します。緑(YFP)と青(CFP)チャンネルに対して同じROIと焦点面を使用して繰り返し、すべての平均強度値を保存します。
    6. 画像上の任意の場所をクリックして、目的のセルの楕円 ROI を削除します。
    7. 正規化の背景レベルを測定するには、Cスクロールバーを使用して赤(dTomato)チャンネルを選択します。[分析 ] を選択して、このチャネルのフィールド全体の最小強度測定を行います測定します。緑(YFP)と青(CFP)チャンネルに同じ焦点面を使用して繰り返し、すべての最小強度値を保存します。
  2. 対象のセルの相対 RGB チャネルのウェイトを計算します。
    注:
    これらの強度値からの相対的な RGB チャネルの重みの計算は、Microsoft Excel や R43などのさまざまなソフトウェア プログラムで実行できます。
    1. そのチャンネルと焦点面のフィールド全体から最小強度を差し引いて、各チャンネルのセルROIの平均強度測定を正規化します。
    2. 各チャネルから正規化された平均 RGB 強度値を合計して、セルの正規化された RGB 強度の合計を求めます。
    3. そのチャネルの正規化平均強度値を正規化された RGB 強度の合計で割って、各チャネルの相対チャンネルの重みを計算します。
  3. R43、,44の 3 項パッケージを使用して、相対 RGB チャネルの重みを三項プロットとして表示します。3 次元プロットは、3D RGB 空間での類似した色のクラスタリングを視覚化するのに便利です。
  4. 色の拡散係数を計算して、セルの色の差を定量化します。
    1. 次の式を使用して、3D RGB 空間の 2 つの色のユークリッド距離を計算します。
      figure-protocol-8537
      ここで R、G、B は、7.2 で計算された相対 RGB チャネルの重みになります。
    2. 理解しやすいように、色の距離を√2で割って色距離を正規化し、色の間の最大可能な距離を、0と1の間の色拡散係数を得るために、0は全く同じ色を示し、1は全く異なる色を示します(例えば、純粋な赤と純粋な青)。

結果

このセクションは、ここで説明するin vivo多色タイムラプス撮像アプローチを用いて得ることができる結果の例を示す。我々は、開発中のゼブラフィッシュ後脳14の増殖性心室領域における細胞のBrainbow色分けクローンを示す(図1)。

通常、Brainbow標識された細胞が特定の放射状繊維に沿って配置されたとき、それらは同じ色(

ディスカッション

本プロトコルは、開発中のゼブラフィッシュ後脳における前駆細胞およびニューロンのクローンを可視化し、Brainbowおよびタイムラプス共焦点顕微鏡11を用いて生体内でそれらに従う方法を説明する。インビトロまたはエキビボ研究と比較してこのプロトコルの主な利点は、時間の経過とともに脊椎動物の脳の増殖帯を直接観察する能力である。この技術は、レトロウイルス...

開示事項

著者らは開示するものは何もない。

謝辞

技術的および知的な貢献に対して、Y.A.パン、J.リベット、Z.トビアスに感謝します。この作品は、国立科学財団(賞1553764)とM.J.マードック慈善信託によって支援されました。

資料

NameCompanyCatalog NumberComments
1.5 mL transfer pipette (fine tip)Globe Scientific, Inc.134020
1-phenyl-2-thiourea (PTU)Alfa AesarL06690Diluted to 0.2 mM in E3 to prevent embryo pigmentation
50 mL conical tubesCorning352070For heat shocking embryos
6 lb nylon fishing lineSecureLineNMT250For making embryo manipulators
7.5 mL transfer pipetGlobe Scientific, Inc.135010
CaCl2SigmaC3881For E3
Cotton swabsPuritan867-WC NO GLUEFor making embryo manipulators
Cre recombinaseNew England BiolabsM0298M
Digital dry bathGenemate490016-616Used to store LMA at 42 °C
Epifluorescence dissection scope
Glass capillary tubesWorld Precision InstrumentsTW100F-4
IncubatorForma Scientific3158To maintain embryos at 28 °C
Injection plate moldsAdaptive Science ToolsTU-1
Isotemp water bathFisher Scientific2320For heat shocking embryos
KClAMRESCO0395For E3 and for DNA solution for injections
Laser-scanning confocal microscopeZeissLSM710
LE agaroseGenemateE3120To create agarose injection plates
Low-melt agarose (LMA)AMRESCOJ234
Mating tanksAquaneering, Inc.ZHCT100
Methylene blueSigmaM9140For E3
MgSO4Sigma9397For E3
MicromanipulatorWorld Precision InstrumentsM3301
Micropipette PullerSutter Instrument Co.P-97
MS-222 Tricaine-SWestern Chemical, Inc.Stock made at 4 mg/mL in reverse osmosis (RO) water, then added dropwise to E3 to final concentration of 0.2 mM to anesthetize embryos
NaClJ.T. Baker4058-01For E3
Petri dishes (90 mm, 60 mm)Genesee Scientific32-107GTo house embryos and create imaging chamber (60 mm)
Phenol redSigmaP0290
Soft stitch ring markersClover Needlecraft, Inc.354For creating imaging chamber with Petri dish
Super glue (Ultra gel control)Loctite1363589For making embryo manipulators
Syringe needlesBeckton DickinsonBD329412For dechorionating embryos

参考文献

  1. Lyons, D. A., Guy, A. T., Clarke, J. D. W. Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development. 130, 3427-3436 (2003).
  2. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 409 (6821), 714-720 (2001).
  3. Kriegstein, A., Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience. 32, 149-184 (2009).
  4. Florio, M., Huttner, W. B. Neural progenitors, neurogenesis and the evolution of the neocortex. Development. 141, 2182-2194 (2014).
  5. Mcconnell, S. K. Constructing the Cerebral Cortex: Neurogenesis and Fate Determination Review. Neuron. 15, 761-768 (1995).
  6. Schmidt, R., Strähle, U., Scholpp, S. Neurogenesis in zebrafish - from embryo to adult. Neural Development. 8, 3 (2013).
  7. Chenn, A., Walsh, C. Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors. Science. 297 (5580), 365-369 (2002).
  8. Lui, J. H., Hansen, D. V., Kriegstein, A. R. Development and Evolution of the Human Neocortex. Cell. 146 (1), 18-36 (2011).
  9. Nonaka-Kinoshita, M., et al. Regulation of cerebral cortex size and folding by expansion of basal progenitors. The EMBO Journal. 32, 1817-1828 (2013).
  10. Homem, C. C. F., Repic, M., Knoblich, J. A. Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience. 16 (11), 647-659 (2015).
  11. Brockway, N. L., et al. Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Developmental Biology. 453 (2), 130-140 (2019).
  12. Livet, J., et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 450 (7166), 56-62 (2007).
  13. Weissman, T. A., Pan, Y. A. Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics. 199 (2), 293-306 (2015).
  14. Loulier, K., et al. Multiplex Cell and Lineage Tracking with Combinatorial Labels. Neuron. 81 (3), 505-520 (2014).
  15. Pan, Y. A., et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 140, 2835-2846 (2013).
  16. Ko, S. K., Chen, X., Yoon, J., Shin, I. Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chemical Society Reviews. 40, 2120 (2011).
  17. Kesavan, G., Hammer, J., Hans, S., Brand, M. Targeted knock-in of CreERT2 in zebrafish using CRISPR/Cas9. Cell and Tissue Research. 372, 41-50 (2018).
  18. Cook, Z. T., et al. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Molecular Biology of the Cell. 30 (4), 491-505 (2019).
  19. Kuwata, M., Nikaido, M., Hatta, K. Local heat-shock mediated multi-color labeling visualizing behaviors of enteric neural crest cells associated with division and neurogenesis in zebrafish gut. Developmental Dynamics. 248, 437-448 (2019).
  20. Kinkhabwala, A., et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proceedings of the National Academy of Sciences. 108 (3), 1164-1169 (2011).
  21. Heap, L. A., Goh, C. C., Kassahn, K. S., Scott, E. K. Cerebellar Output in Zebrafish: An Analysis of Spatial Patterns and Topography in Eurydendroid Cell Projections. Frontiers in Neural Circuits. 7, 53 (2013).
  22. Robles, E., Filosa, A., Baier, H. Precise Lamination of Retinal Axons Generates Multiple Parallel Input Pathways in the Tectum. The Journal of Neuroscience. 33 (11), 5027-5039 (2013).
  23. Dirian, L., et al. Spatial Regionalization and Heterochrony in the Formation of Adult Pallial Neural Stem Cells. Developmental Cell. 30, 123-136 (2014).
  24. Chen, X. A., et al. Behavioral/Cognitive QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. The Journal of Neuroscience. 36 (6), 1823-1840 (2016).
  25. Albadri, S., De Santis, F., Di Donato, V., Del Bene, F., Jaenisch, R., Zhang, F., Gage, F. CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish. Genome Editing in Neurosciences. , 41-49 (2017).
  26. Furlan, G., et al. Life-Long Neurogenic Activity of Individual Neural Stem Cells and Continuous Growth Establish an Outside-In Architecture in the Teleost Pallium. Current Biology. 27, 3288-3301 (2017).
  27. Herget, U., Arturo Gutierrez-Triana, J., Salazar Thula, O., Knerr, B., Ryu, S. Single-cell reconstruction of oxytocinergic neurons reveals separate hypophysiotropic and encephalotropic subtypes in larval zebrafish Brainbow-guided morphology of oxytocinergic cells. eNeuro. 4 (1), (2017).
  28. Halloran, M. C., et al. Laser-targeted gene expression. Development. 127, 1953-1960 (2000).
  29. Shoji, W., Sato-Maeda, M. Application of heat shock promoter in transgenic zebrafish. Development, Growth & Differentiation. 50, 401-406 (2008).
  30. Luskin, M. B., Pearlman, A. L., Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a Recombinant Retrovirus. Neuron. 1 (8), 635-647 (1988).
  31. Price, J., Thurlow, L. Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development. 104, 473-482 (1988).
  32. Walsh, C., Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science. 255 (5043), 434-441 (1992).
  33. Walsh, C., Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature. 362 (6421), 632-635 (1993).
  34. Cai, L., Hayes, N. L., Nowakowski, R. S. Synchrony of Clonal Cell Proliferation and Contiguity of Clonally Related Cells: Production of Mosaicism in the Ventricular Zone of Developing Mouse Neocortex. The Journal of Neuroscience. 17 (6), 2088-2100 (1997).
  35. Reznikov, K., Acklin, S. E., Van Der Kooy, D. Clonal Heterogeneity in the Early Embryonic Rodent Cortical Germinal Zone and the Separation of Subventricular From Ventricular Zone Lineages. Developmental Dynamics. 210, 328-343 (1997).
  36. Qian, X., Goderie, S., Shen, Q., Stern, J., Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development. 125, 3143-3152 (1998).
  37. McCarthy, M., Turnbull, D. H., Walsh, C. A., Fishell, G. Telencephalic Neural Progenitors Appear to Be Restricted to Regional and Glial Fates before the Onset of Neurogenesis. The Journal of Neuroscience. 21 (17), 6772-6781 (2001).
  38. Yu, Y. C., Bultje, R. S., Wang, X., Shi, S. H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature. 458 (7237), 501-504 (2009).
  39. Nusslein-Volhard, C., Dahm, R. . Zebrafish. , (2002).
  40. Nasiadka, A., Clark, M. D. Zebrafish Breeding in the Laboratory Environment. ILAR Journal. 53 (2), 161-168 (2012).
  41. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. Journal of Visualized Experiments. 25, e1115 (2009).
  42. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  43. R Core Team. . R: A language and environment for statistical computing. , (2017).
  44. Smith, M. R. . Ternary: an R package to generate ternary plots. , (2017).
  45. Baye, L. M., Link, B. A. Development/Plasticity/Repair Interkinetic Nuclear Migration and the Selection of Neurogenic Cell Divisions during Vertebrate Retinogenesis. The Journal of Neuroscience. 27 (38), 10143-10152 (2007).
  46. Leung, L., Klopper, A. V., Grill, S. W., Harris, W. A., Norden, C. Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development. 139, 2635 (2012).
  47. Kerr, J. F. R., Wyllie, A. H., Curriet, A. R. Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. British Journal of Cancer. 26, 239 (1972).
  48. Cole, L. K., Ross, L. S. Apoptosis in the Developing Zebrafish Embryo. Developmental Biology. 240, 123-142 (2001).
  49. Liao, J., He, J., Yan, T., Korzh, V., Gong, Z. A Class of NeuroD-Related Basic Helix-Loop-Helix Transcription Factors Expressed in Developing Central Nervous System in Zebrafish. DNA and Cell Biology. 18 (4), 333-344 (1999).
  50. Trevarrow, B., Marks, D. L., Kimmel, C. B. Organization of hindbrain segments in the zebrafish embryo. Neuron. 4 (5), 669-679 (1990).
  51. Yabu, T., Todoriki, S., Yamashita, M. Stress-induced apoptosis by heat shock, UV and gamma-ray irradiation in zebrafish embryos detected by increased caspase activity and whole-mount TUNEL staining. Fisheries Science. 67, 333-340 (2001).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

157

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved