JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、ラベルフリーインピーダンス測定を用いて単一の微小電極上で成長した単一の細胞層からのアゴニスト誘発GPCR活性化に関するフル用量応答関係のリアルタイム記録を示す。新しいドージング方式は、時間分解能を損なうことなくスループットを大幅に向上させます。

要約

細胞培養実験においてリガンド誘導GPCR活性化を非侵襲的に研究するために、ラベルフリーインピーダンスベースのアッセイがますます使用されています。このアプローチは、デバイス依存の時間分解能を数十ミリ秒に抑えるリアルタイムのセル監視を提供し、高度に自動化されています。しかし、サンプル数が高くなると(例えば、さまざまな異なるリガンドに対する用量応答試験)、使い捨て電極アレイのコストと、連続したウェルバイウェル記録に対する利用可能な時間分解能が制限されることがあります。従って、ここでは、ラベルフリーGPCRアッセイの出力を大幅に増加させる可能性のあるシリアルアゴニスト付加プロトコルを紹介します。連続アゴニスト添加プロトコルを使用して、GPCRアゴニストは、サンプルのインピーダンス(アゴニストモード)を連続的にモニタリングしながら、単一細胞層に濃度を増加させながら順次添加される。このシリアルアプローチにより、1つの単一細胞層からGPCRアゴニストの完全な用量応答曲線を確立することが可能になりました。連続アゴニスト付加プロトコルは、異なるGPCRカップリングタイプ、Gq Gi/0またはGsに適用可能であり、研究中の受容体の組換えおよび内因性発現レベルと互換性がある。GPCRアンタゴニストによる受容体遮断は、同様に評価可能である(アンタゴニストモード)。

概要

このレポートは、標識のないインピーダンス測定による接着性成長細胞におけるリガンド誘導Gタンパク質共役受容体(GPCR)活性化の定量化のために開発された逐次付加プロトコルの詳細な説明を提示する。Gタンパク質共役受容体(GPRS)は、多数の生理機能およびヒト疾患1に関与している。これと細胞表面での良好なアクセス性のために、GPCRsは最も重要な薬物標的の1つです。この評価は、GPCRsを標的とする700の承認された薬物の推定数に反映され、すべての市販薬の約35%のシェアに相当する2。

新薬の開発は、(i)生物学的標的分子の同定と機能的特徴付け、および(ii)新しい鉛物質の発見および管理可能な薬物への開発という2つの中心的なプロセスからなる。どちらのプロセスにおいても、薬物標的相互作用とその後の生物学的下流応答を定量的に評価するためには効率的な方法が必要である。前臨床薬の開発プロセスの異なる段階は、薬物と標的の間の生体分子相互作用研究から、培養中の細胞の機能的研究、切除臓器物質または動物全体に関する実験に至るまで、さまざまな分析方法を利用しています。いずれも、前者から後者3まで生理学的意義と生物学的複雑さが増加する。動物実験を最小限に抑えることが全体的な目標ですが、実験動物や動物全体から隔離された器官を用いた薬理学的研究は、新薬候補を包括的に特徴付けるために避けられないと考えています。分析的読み出しの面では、臓器薬理学研究は、最も高い生理学的関連性の遠位、統合的な「全体的な」機能的応答を提供する。このような実験の欠点は、技術的および倫理的な理由に対するハイスループットスクリーニングと互換性がなく、インビトロ細胞培養4に基づく研究によって大部分が置き換えられている点である。

細胞培養におけるGPCR活性化を定量化する方法は、異なるラベルベースの化学アッセイを含み、第2のメッセンジャーを特異的に検出する、下流のシグナル伝達タンパク質のリン酸化状態、ある転写因子またはリガンド誘導細胞内受容体の転写を介した転写活性化4、5を含む。このようなラベルベースのアッセイの欠点は、潜在的に有害な色素または放射性マーカーで細胞にラベルを付ける必要があります。多くの場合、事前に指定する必要がある露出時間のエンドポイント決定としてアッセイ実行する必要があります。ラベルベースのエンドポイントアッセイを使用すると、実験のこの非常に限られた偏ったタイミングと、化学標識およびプローブが通常の細胞生理学に干渉するリスクが伴います。

近年、共鳴導波格子5,6を適用するインピーダンスベースの技術や光学方法など、GPCR活性化をモニタリングするためのラベルフリーアッセイが登場している。これらのアプローチでは、細胞の標識は実験的に必要とされない。これらの物理的読み出しは、低振幅信号上で動作するように、そのような方法は非侵襲的と考えられ、それらは潜在的にリアルタイムで連続的な細胞モニタリングを可能にし、観察時間は、読み出しではなく細胞培養によって制限される。臓器全体からの読み出しと同様に、ラベルフリーのアプローチは、一般的にホリスティック細胞応答について報告し、シグナリングネットワーク全体に沿った統合が時間依存的であるが、細胞形態または質量再分布の非特異的な変化をもたらすときの受容体活性化のはるかに下流である。インピーダンスベースアッセイは、細胞形状7,8の変化の誘電体シグネチャを測定するのに対し、共鳴導波路格子を用いた測定は、動的質量再分配(DMR)9に起因するセル基板界面における屈折率の変化に敏感である。統合文字は、Gタンパク質(Gq、Gi/0、Gs、G12/13)またはβアレフィングの種類に関係なく、受容体媒介事象に非常に敏感なラベルフリーの方法を作り、受容体の内因性発現レベルに適しています。

標準的なラベルフリーインピーダンスベースのアッセイでは、細胞は、各ウェル10の底に堆積した同平面金膜電極を有するマルチウェルプレートで付着して成長する。これらの電極アレイはインピーダンスアナライザに接続され、実験刺激に対する細胞応答は時間分解されたインピーダンス測定値によって個々の井戸から記録されます。典型的なGPCRアッセイでは、リガンドは個々のウェルに個別に異なる濃度で添加される。インピーダンス時間経過におけるリガンド誘導性の変化は、次に、最大信号変化、曲線下面積、所定の時間間隔内または所定の時間点における曲線の傾き内の信号変化などの特性曲線特徴に関して分析され、リガンドの効力および有効性11を定量化する。

電極アレイのコストは、ハイスループットスクリーニング(HTS)キャンペーンにおけるこの技術の適用を制限する可能性がある。さらに、並列に追跡されるサンプルの数が増加するにつれて、個々の測定の数が増加し、それによって各ウェルの利用可能な時間分解能が徐々に減少する - でも、最先端のマルチチャンネル記録のために。このような条件下では、高速かつ一過性の細胞応答は、測定を逃れ得る。さらに、従来の1ウェル - 1つの濃度アプローチは、リガンド-GPCR相互作用分析における適合性に関して、浸透したオルガンオンチップまたはボディオンチップの開発にかなりの時間とコスト要因を課します。

このため、アゴニスト濃度が段階的に増加する一方で、単一ウェルのインピーダンスを連続的にモニタリングすることにより、培養細胞単層におけるリガンド誘導GPCR活性化の全用量応答曲線の記録を可能にする段階的投与プロトコルを開発した。この連続アゴニスト付加プロトコルは、ヒスタミン1受容体(H1R)を内因的に発現するヒトU-373MG細胞の現在の例に示すように、ウェル当たりのスループットを10以上の濃度に有意に増加させる。したがって、この方法は、時間分解能が最大で保持されている間、ラベルフリー用量応答研究におけるスループットを大幅に改善する可能性を有する。

Access restricted. Please log in or start a trial to view this content.

プロトコル

1. 電極アレイ上のセルシード

注: 電極レイアウトの選択は、感度と調査中のセル数のトレードオフです。電極が小さいほど、感度が高いほど測定ですが、研究中のセルの数は小さくなります。ベースライン条件下で時間の経過に伴う強いインピーダンス変動を示す細胞の場合、より大きなまたは桁間電極が好ましい。

  1. 37 °Cの水浴で標準的な細胞の継ぎ子および播種に必要なすべての解決を前暖め。ヒトU-373 MG細胞を用いたアッセイ:カルシウムとマグネシウムなしのリン酸緩衝生理食塩水(PBS)、0.05%(w/v)トリプシン、細胞培養培地(イーグルの最小必須培地(EMEM)を5%(v/v)胎児子牛血清(FCS)、2mM Lグルタミンおよび100μ/mLl-sllicin)で補う。
  2. 従来の細胞培養フラスコまたはディッシュの底に成長したストック培養の細胞層を2回リンスする。
  3. PBSを取り出し、トリプシン溶液(25cm2の場合は1mL)を加え、細胞を37°Cで5分間インキュベートさせる(U-373 MG細胞に適用)。
  4. 顕微鏡による成長基質の底部からの細胞の完全な剥離のための制御。
  5. 細胞懸濁液にトリプシン1mL当たり9mLの細胞培養培地を加えて、細胞が完全に剥離するとすぐにトリプシン反応を停止する。懸濁液を基板上にピペットで覆うことによって、細胞培養基質の底部から残った細胞を慎重にすすする。
  6. ピペットで細胞懸濁液を回収し、遠心管(15 mLまたは50 mLチューブ)に移します。
  7. 室温で10分間110 x gで遠心分離して細胞をスピンダウンします。
  8. 細胞をカウントする前に、細胞ペレットを慎重に取り除き、細胞ペレットを培地に再懸濁してから、細胞をカウントします(例えば位相差顕微鏡や手動計数用のヘリコトメーターを使用)。
  9. セル懸濁液を目的のセル密度に調整します。U-373 MG細胞を用いた実験では、100 000個の細胞/cm2を使用して、48時間以内にコンフルエントな細胞層を増殖させます。これは、成長面積が約0.8cm2、ウェル体積が400μLの8ウェル電極アレイの場合、200,000セル/mLの細胞密度に変換されます。
    注:再現性のあるGPCR活性化実験では、細胞を電極アレイ上の単層に集結させる必要があります。細胞表面上の適切な受容体発現を確実にするために、細胞は実験を行う前に少なくとも36時間播種されるべきである。細胞の播種に関して異なる細胞密度を試験することは、多くの場合、最良の実験条件を特定するのに意味がある。
  10. セル懸濁液を電極アレイの井戸に加え、ウェルの底部のセルの均一な分布を確保するために、セルを室温で10~15分間落ち着かせます。
  11. 37°Cで5%CO2(培地タイプに依存)と加湿雰囲気で標準細胞培養インキュベーターで少なくとも36時間細胞を成長させます。実験前に細胞培養培地24時間を変更した。
  12. 実験当日、(位相コントラスト)顕微鏡で電極アレイ上の細胞層を検査し、細胞を用いた電極の完全な被覆を確実に行います。

2. 無血清培地中の細胞の平衡化

  1. この研究で、予め温かい無血清培地:ライボヴィッツのL15培地。
  2. 電極アレイ上で増殖した細胞から細胞培養培地を除去し、予め温めた無血清培地に置き換えます。8 ウェル形式の電極アレイには 200 μL、96 ウェル電極アレイには 150 μL を使用します。
  3. 細胞を少なくとも2時間37°Cで無血清培地で平衡させる。平衡時間は、セルの種類によって大きく異なります。例えば、U-373 MG細胞は2時間必要、CHO細胞は4時間必要であり、BAECはL-15培地での一晩の平衡化を必要とし得る。
    注:L-15培地はCO2独立であり、CO2フリー雰囲気を必要とします。L-15での平衡化のために、インキュベーターを0%CO2に設定する。平衡はインピーダンスの測定値によって監視することができ、最初の実験のために行うことをお勧めします。

3. インピーダンス測定値による細胞平衡のモニタリング

  1. 電極アレイをインピーダンスアナライザの接続アレイホルダーに入れます。
  2. 電極とインピーダンスアナライザの間に適切な低インピーダンス接触を確保します。このチェックは、異なる楽器のために個別に異なります。
    メモ:器具が電極に接続できない場合は、再度コンタクトクランプを開き、ホルダー内の正しい位置に電極アレイを再び再処理して、再試行してください。
  3. ソフトウェアのユーザーインターフェイスから電極タイプおよび/またはマルチウェル形式を選択します。
  4. 測定パラメータを設定します。さまざまなオプションが利用できます。
    注:最も感度の高いAC周波数を選択するには、研究中の電極レイアウトとセルタイプに依存するため、文献および機器のマニュアルを参照してください。通常、センシング周波数は4kHz~50kHzの範囲です。ここで、U-373 MG細胞を直径250μmの円形の電極上で成長させ、12kHzの交流周波数でモニタリングした。
    1. 単一および複数の周波数データ取得モードが使用可能な場合は、単一周波数モードを選択して最大時間分解能を確保します。測定は、この単一周波数で行われます。最も広く普及した器械のために、利用できる頻度の窓に沿って多数の事前に設定された頻度がある。
    2. 調査中のウェルの数が低いか、または時間分解能が重要でない場合は、代わりに複数の周波数記録を選択します。指定した周波数数でのインピーダンス測定値は、後で詳細な分析のためにすべてのウェルに記録されます。
      注: 時間分解能は、ウェルあたりに記録される周波数の数が増加し、ウェルの数が増加すると減少します。周波数とデータ取得モードの選択オプションは、計測器のタイプやバージョンによって異なります。
  5. 時間コースデータの取得を開始します。
  6. 細胞層インピーダンス(少なくとも2時間)に従って、インピーダンスが安定するまで続きます。その間、アゴニストのソリューションを準備します。
  7. 細胞層が安定したインピーダンスレベルに達した場合、(i)同じ実験内で連続アゴニスト付加に進むか、(ii)データ取得を終了し、アゴニスト誘発受容体活性化をモニタリングするための新しいデータセットを開始する。

4. アゴニストモードでの実験のためのアゴニスト溶液の調製

  1. 式(1)に従って、シリアル・ドージングの各ステップに必要なアゴニスト解の濃度を計算します。nの範囲は、1から連続加算の総数i.xは、ステップn.yでウェル内の濃度および体積を示し、ステップnにおける「溶液を加える」の量を示す。

figure-protocol-3333

注: 反復の数を考慮し、各濃度ステップの「溶液を追加する」の総体積を計算します。一般的な計算の結果は、表 1-4に示されています。この範囲は、連続添加時に投与される部分の濃度と数を定義するので、研究されるアゴニスト濃度範囲についての一般的な考え方が必要です。連続アゴニスト付加プロトコルを使用して、アゴニスト濃度が段階的に増加する。したがって、次の用量が加えられるときにすでにウェルに存在するアゴニストの量を考慮に入れねばなっている。ウェルにすでに存在するアゴニスト分子のがnx =c x (現在の濃度xおよび体積V X)であり、次の加算後のウェル内の分子数が nx+yである場合、nyを加える分子の数は、溶液に適用される溶液の濃度 cyと体積 V y (ny = c yy)によって決まります。アゴニストの一部を添加した後、ウェル内の新しい量のアゴニスト分子は:cx+y∙V+y =c×××××c∙V+cy y. この計算は、後続の各ステップに適用されます。各工程で添加する部分のウェルとアゴニストの量のウェルとアゴニストの量の相互依存性のため、各ステップの後の最終濃度を事前に定義することが重要である。

モード 1:液体が連続的に加えられているので、ウェル内の体積は各ステップで増加します。
このモードと 8 ウェル形式を使用して、Vx1 = 200 μL および Vy1 . V yi = 30 μL を使用します。

モード 2:各ステップで追加されたボリュームが、後続の追加の直前に削除されるので、ウェル内のボリュームは一定です。
このモードと 96 ウェル形式を使用して、Vx1 = 150 μL および Vy1. Vyi = 75 μL を使用します。

  1. 濃度あたりの総容積とピペット処理の詳細な手順を含むデータシートを印刷します。
  2. 必要な量ですべてのソリューションを準備します。細胞の平衡化に使用されるのと同じ無血清培地ですべてのアゴニスト溶液を作る。
    注意: ヒスタミンジドロクロリドは、2012 OSHAハザード通信規格(29 CFR 1910.1200)によって危険と考えられています。ヒスタミンは、皮膚刺激、重篤な眼刺激、アレルギー、アレルギー、喘息症状、呼吸困難を引き起こす可能性があり、吸入すると呼吸刺激を引き起こす可能性があります。安全データシートをご検討ください。
    注:アゴニストソリューションを可能な限り新鮮にしてください。溶液中のアゴニストの安定性はかなり異なる場合がある。実験に使用するまで溶液を4°C以下に保存してください。一部の分子に対しては、ペプチド系または脂質ベースの分子を使用する場合のBSAのような追加の安定化添加剤は、ウェルおよびチューブの壁への吸着を防ぐために考慮され得る。
  3. 実験を96ウェル形式で行う場合は、溶液を従来の96ウェルプレート(無電極)に移し、8-(または12)チャンネルピレットを使用して電極アレイに素早く液体を転送します。

5. アンタゴニストモードでの実験のためのアゴニスト溶液の調製

注:全体に適用される濃度でアンタゴニスト溶液を準備します。アンタゴニスト溶液の体積および濃度は、アゴニスト添加のモード(1または2)に依存する。8 ウェル形式または 96 ウェル形式での実験例 2: (A) 8 ウェル形式 (Vx1 = 200 μL, Vアンタゴニスト= 200 μL);(B) 96 ウェル形式 (Vx1 = 150 μL, Vアンタゴニスト= 75 μL).

  1. 手順 4.1 で説明されているように、シリアル・ドージングの各ステップに必要な各アゴニスト溶液の濃度を計算します。
  2. 細胞の平衡化に使用されるのと同じ無血清培地ですべてのアゴニスト溶液を作り、実験でそれぞれの井戸について計画された同じ最終濃度でアンタゴニストを加える。
    注:この場合、ヒスタミンストック溶液(10 mM)はL-15培地で調製されます。アゴニストが他の溶媒(例えば、ジメチルスルフォキシド(DMSO))に溶解される場合、溶媒制御は、添加の各ステップで増加する溶媒負荷を考慮して含まれるべきである。

6. アゴニストモードでシリアル加算プロトコルを実行する

  1. ステップ 3.1 ~ 3.5 で説明されているように、データの取得を開始します。
  2. アゴニスト溶液を使用前に温めるには、添加前に約10〜15分前にインキュベーターに入れることで、使用前にアゴニスト溶液を温めます。
    注:熱陰性物質を使用する場合、溶液は37°Cに長く保たれるべきではありません。10~15分間のプレウォーミングが重要と考えられる場合は、水浴に添加する直前に37°Cに溶液を持参してください。
  3. 選択した追加モードに応じて、アゴニストのシリアル・ドージングを実行します。次モード1次用量の添加ごとにウェルの総体積が増加する。モード2では、各ステップで追加される同じ体積も、次の高用量を追加する直前に再び除去される。
    注:2つの後続のアゴニスト用量の間の細胞層の平衡化に必要な時間は、細胞の応答時間に依存する。並列モードでの最初の実験(1つのウェル - 1つの濃度)は、異なるアゴニスト濃度の(i)細胞応答時間と(ii)最も敏感な曲線パラメータ(例えば、インピーダンス最大、時間xの後のインピーダンス)を明らかにします。

A:モード1 / 8ウェルフォーマット

  1. 無血清培地200μLで平衡化した細胞に、アゴニストの最も低濃度の溶液の30μLを加える。
  2. 細胞が応答し、事前に定義された期間(例えば、15分)に対して平衡化させます。
  3. 次に高濃度の2番目の溶液の30μLを加えます。
  4. 3 番目、4 番目のアゴニストソリューションを使用して、手順 6.3.1-6.3.3 を繰り返します。
    注:10の濃度ステップで作業すると、実験の最後に合計500μLの結果となり、これは〜550 μLのこれらの井戸の最大適用体積をわずかに下回ります。

B:モード2 / 96ウェルフォーマット

メモ:96ウェル形式の実験を実行する際に、インピーダンス計測器のソフトウェアを介して各液体処理ステップ(追加/除去)中にデータ取得を一時停止します。より精巧な液体処理は、データ収集を妨げる可能性があります。マルチチャンネルピペットを使用します。

  1. データ取得を一時停止します。
  2. 無血清培地の150μLで平衡化した細胞に、アゴニストの最も低濃度の溶液の75μLを加える。
  3. データの取得を再開します。
  4. 細胞が応答し、事前に定義された期間(例えば、15分)に対して平衡化させます。
  5. 通常の平衡時間が終了する前に約1〜2分、測定を一時停止し、各ウェルから75 μLを取り除きます。
    注:ソリューションを削除する必要がある時間ポイントは、並行して監視されるウェルの数とピペットの速度によって異なります。ソリューションの削除に必要な時間は、後続の手順の間の時間を超えないようにする必要があります。
  6. 次の高濃度で2番目の溶液の75 μLを加え、測定を再開します。
  7. 3 番目、4 番目のアゴニストソリューションを使用して、手順 6.3.8-6.3.10 を繰り返します。

7. アンタゴニストモードでのシリアル加算プロトコルの実行

  1. ステップ 3.1 ~ 3.5 の説明に従って測定を開始します。
  2. 細胞層の平衡化の際に、アンタゴニスト溶液(例えば、L15培地中で1.5μMジフェンヒドラミン塩酸塩の200μL)を調製する。
    注意: ジフェンヒドラミン塩酸塩は潜在的な急性の健康影響を持っています..飲み込んだり吸入すると有害で、眼や皮膚に刺激を与える可能性があります。呼吸器および消化管の刺激を引き起こす可能性があります。安全データシートをご検討ください。
  3. アンタゴニストおよびアゴニスト溶液を、細胞培養物に加える前に約10〜15分前にインキュベーターに入れることで、前温め(cf. 6.2)。アンタゴニストフリーのウェルがアッセイにも含まれている場合は、プレウォーム無血清培地も含まれます。
  4. 指定された井戸にアンタゴニスト溶液を追加します。細胞をアンタゴニストと15~20分間平衡させます。アンタゴニストフリーのウェルが含まれている場合は、これらのウェルに同じ量の無血清培地を追加します。
  5. モード2のアンタゴニストの追加によると、井戸から溶液を削除
    (A) 8ウェル形式(200 μL)
    (B) 96ウェル形式(75 μL)
  6. ステップ 6.3 で説明されているように、アゴニスト加算シーケンスを実行します。

8. データのエクスポートと分析

  1. インピーダンス計測器のソフトウェアを使用してデータをエクスポートし、記録されたすべてのデータを独自のデータ形式から共通のデータ形式(例えば、csv)に変換します。この手順により、データの再構成と他のソフトウェア パッケージとの表示が可能になります。
  2. CSV 形式のデータを科学的なデータ分析ソフトウェアに読み込みます。
  3. アゴニスト解法の最初の加算前の最後のデータポイントのインピーダンスを減算し、t = 0に加算する時間を設定して、インピーダンス値を正規化します。正規化インピーダンスの時間経過をプロットします。
  4. 個々の時間コースをプロットし、各加算ステップの後にインピーダンスの最大値を識別します。これらの値を使用してデータ シートを作成します。
  5. アゴニスト濃度の関数として、インピーダンスの変化の最大値(または適用可能な場合は最小)をプロットします。これは、個々の井戸または平均(平均±SD)のために行うことができます。
  6. データフィッティングルーチンを使用して、4つのパラメータロジスティックモデル(式2)を使用して、半最大有効濃度(EC50)と最大応答(EMax)を決定します。

figure-protocol-8735

:cはアゴニスト濃度を示し、A1は最小であり、A2はシグモイダル用量応答曲線の最大漸近距離(A2 = EMax)である。EC50は曲線の変曲点における濃度であり、nは丘斜面に対応する。

Access restricted. Please log in or start a trial to view this content.

結果

各種アゴニスト溶液を調製するための典型的なスキームは、表1-4にアゴニストとしてヒスタミンを用いた8ウェル電極アレイを用いた実験のために示されている。表1および表2は、加算モード1(1)を用いた実験の体積および濃度を示し、表3および表4は加算モード2(...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

このプロトコルは、同じ受容体に対する特定のアンタゴニストの存在または存在しない場合のアゴニスト誘発GPCR活性化の用量応答関係を決定するためのラベルフリーインピーダンス測定の方法を記載する。この方法の概念実証は、最近の出版物12で提示されました。我々の知る限りでは、インビトロの単一細胞層を用いたアゴニスト媒介GPCR活性化の完全な用量応答曲線の確...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者たちは開示するものは何もない。

謝辞

私たちは、バーバラ・ゴリクニックとナジャ・ヒンターレイターが細胞培養と実験的解決策の調製に協力してくれたことに感謝します。著者らは、ドイツ研究財団(DFG)が助成金番号222125149に基づき資金提供した研究訓練グループ1910「選択的GPCRリガンドの薬用化学」による財政的支援に感謝して認めている。JASは、バイエルン男女共同参画プログラムによって授与された奨学金に特に感謝しています。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Bürker counting chamberMarienfeld (Lauda-Königshofen, Germany)640210
cell culture flasks 25 cm2Greiner bio-one (Frickenhausen, Germany)690175
Cell incubator (Heraeus Function Line BB15)Thermo Scientific (Darmstadt, Germany)\
Centrifuge (Heraeus 1S-R)Thermo Scientific (Darmstadt, Germany)\
Diphenhydramine hydrochlorideSigma Aldrich (Taufkirchen, Germany)D3630
Eagle's Minimum Essential Medium with 4.5 g/L D-Glucose and 2.2 g/L NaHCO3Sigma Aldrich (Taufkirchen, Germany)D5671
Impedance Instrument (ECIS Zθ)Applied BioPhysics Inc. (Troy, NY, USA)\
8-well electrode Arrays (8W1E PET)Applied BioPhysics Inc. (Troy, NY, USA)\PET base with 0.049 mm2 working electrode and ~50 mm2 counter electrode (gold)
96-well electrode arrays (96W1E+ PET)Applied BioPhysics Inc. (Troy, NY, USA)\PET base with two electrodes (gold) with 0.256 mm2 total electrode area
Fetal calf serum (FCS)Biochrom (Berlin, Germany)S0615
Histamine dihydrochlorideCarl Roth (Karlsruhe, Germany)4017.1
Laminar flow hood (Herasafe, KS 12)Thermo Scientific (Darmstadt, Germany)51022515class II safety cabinet
Leibovitz' L-15 mediumThermo Scientific (Darmstadt, Germany)21083-027
L-glutamineSigma Aldrich (Taufkirchen, Germany)G7513
Micropipette large (100 - 1000 µL)Brandt (Wertheim, Germany)704780
Micropipette large (20 - 200 µL)Brandt (Wertheim, Germany)704778
Microscope (phase contrast, Nikon Diaphot)Nikon (Düsseldorf, Germany)
Penicillin/streptomycinSigma Aldrich (Taufkirchen, Germany)P0781
Phosphate buffered saline (PBS)Sigma Aldrich (Taufkirchen, Germany)D8537
Pipette, serologicalGreiner bio-one (Frickenhausen, Germany)607 180
Pipettor (accu-jet pro)Brandt (Wertheim, Germany)26300
TrypsinSigma Aldrich (Taufkirchen, Germany)T4174in PBS with 1 mM EDTA
Tube, 15 mLGreiner bio-one (Frickenhausen, Germany)188 271
Tube, 50 mLGreiner bio-one (Frickenhausen, Germany)210 261
U-373 MG cellsATCC (Rockville, MD, USA)ATCC HTB-17
water bath (TW21)Julabo (Seelbach, Germany)\

参考文献

  1. Rosenbaum, D. M., Rasmussen, S. G., Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature. 459, 356-363 (2009).
  2. Sriram, K., Insel, P. A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs. Molecular Pharmacology. 93, 251-258 (2018).
  3. Kaitin, K. I. Deconstructing the drug development process: The new face of innovation. Clinical Pharmacoly and Therapeutics. 87, 6(2010).
  4. Kenakin, T. P. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nature reviews. Drug discovery. 8, 617-626 (2009).
  5. Zhang, R., Xie, X. Tools for GPCR drug discovery. Acta Pharmacologica Sinica. 33, 372-384 (2012).
  6. Scott, C. W., Peters, M. F. Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discovery Today. 15, 704-716 (2010).
  7. Giaever, I., Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proceedings of the National Academy of Sciences of the United States of America. 81, 3761-3764 (1984).
  8. Giaever, I., Keese, C. R. A morphological biosensor for mammalian cells. Nature. 366, 591-592 (1993).
  9. Fang, Y., Ferrie, A. M., Fontaine, N. H., Mauro, J., Balakrishnan, J. Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal. 91, 16(2006).
  10. Stolwijk, J. A., Matrougui, K., Renken, C. W., Trebak, M. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements. Pflugers Archiv : European Journal of Physiology. 467, 2193-2218 (2015).
  11. Lieb, S., et al. Label-free versus conventional cellular assays: Functional investigations on the human histamine H1 receptor. Pharmacological Research. 114, 13-26 (2016).
  12. Stolwijk, J. A., et al. Increasing the throughput of label-free cell assays to study the activation of G-protein-coupled receptors by using a serial agonist exposure protocol. Integrative Biology. 11, 10(2019).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

156 G GPCR

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved