Optical Materialography Part 2: Image Analysis

概要

Source: Faisal Alamgir, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA

The imaging of microscopic structures of solid materials, and the analysis of the structural components imaged, is known as materialography. Often, we would like to quantify the internal three-dimensional microstructure of a material using only the structural features evidenced by an exposed two-dimensional surface. While X-ray based tomographical methods can reveal buried microstructure (for example the CT scans we are familiar with in a medical context), access to these techniques is quite limited due to the cost of the associated instrumentation. Optical microscope based materialography provides a much more accessible and routine alternative to X-ray tomography.

In Part 1 of the Materialography series, we covered the basic principles behind sample preparation. In Part 2, we will go over the principles behind image analysis, including the statistical methods that allow us to quantitatively measure microstructural features and translate information from a two-dimensional cross section to the three-dimensional structure of a material sample.

手順
  1. Complete all the procedures from Materialography Part 1. It should be reminded that the reproducibility of the following can only be assessed by analyzing multiple images from the same sample.
  2. If digital analytical software is available, where the pixels can be categorized based on their brightness and counted accordingly, then it is possible to use Equation [1] to estimate pore volume the based on <AA>. Otherwise, this analysis can, of course, be done by hand.
  3. Now estimate pore volume u

Log in or to access full content. Learn more about your institution’s access to JoVE content here

結果

In Figure 1 we see a cross section of a porous material with a grid superimposed on it. The points of intersection can be used to determine <Pp>. The number of intersection points that lie over dark regions (pores) is divided by the total number of intersection points to get Pp an

Log in or to access full content. Learn more about your institution’s access to JoVE content here

申請書と概要

These are standard methods for analyzing two-dimensional cross sections in materials in order to extract three-dimensional information. We looked specifically at estimating the volume fraction of pores in one material and the average grain size in a second material.

Materialographic sample preparation described here are the necessary first step towards the analysis of internal microstructure of three-dimensional materials using two dimensional information. For example, one might be interested

Log in or to access full content. Learn more about your institution’s access to JoVE content here

タグ
Optical MaterialographyImage AnalysisMicroscopic Structure ImagingStructural ComponentsSolid MaterialsQuantitative Image Analysis MethodsX ray TomographyOptical Microscope based MaterialographyAffordable AlternativeSample PreparationStatistical MethodsThree dimensional Structure QuantificationPorosityGrain DensityEffective DensityMechanical PropertiesElectrical PropertiesOptical PropertiesPermeability

スキップ先...

0:08

Overview

1:01

Principles of Image Analysis for Quantitative Materialography

3:07

Sample Preparation: Review

3:47

Pore Volume Measurement

5:28

Grain Size Measurement

6:26

Applications

7:18

Summary

このコレクションのビデオ:

article

Now Playing

Optical Materialography Part 2: Image Analysis

Materials Engineering

10.9K 閲覧数

article

光学材料グラフィー パート 1: サンプル調製

Materials Engineering

15.3K 閲覧数

article

X線光電子分光法

Materials Engineering

21.4K 閲覧数

article

X線回折

Materials Engineering

87.5K 閲覧数

article

集束イオンビーム

Materials Engineering

8.8K 閲覧数

article

方向固化と位相安定化

Materials Engineering

6.5K 閲覧数

article

微分走査熱量測定

Materials Engineering

36.0K 閲覧数

article

熱拡散率とレーザーフラッシュ法

Materials Engineering

13.1K 閲覧数

article

薄膜の電気めっき

Materials Engineering

19.5K 閲覧数

article

拡張測定による熱膨張の解析

Materials Engineering

15.5K 閲覧数

article

電気化学インピーダンス分光法

Materials Engineering

22.9K 閲覧数

article

セラミックマトリックス複合材料とその曲げ特性

Materials Engineering

8.0K 閲覧数

article

ナノ結晶合金とナノ粒サイズ安定性

Materials Engineering

5.1K 閲覧数

article

ヒドロゲル合成

Materials Engineering

23.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved