Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We have developed a simplified and cost-effective approach for electrode fabrication and conducted recordings of signals across multiple regions in freely moving mice. Utilizing optogenetics, alongside multi-region electrophysiology and calcium signal recording, enabled the revelation of neuronal activities across regions in the seizure kindling model.

Abstract

Epilepsy is a neurological disorder characterized by synchronized abnormal discharges involving multiple brain regions. Focal lesions facilitate the propagation of epileptic signals through associated neural circuits. Therefore, in vivo recording of local field potential (LFP) from the critical brain regions is essential for deciphering the circuits involved in seizure propagation. However, current methods for electrode fabrication and implantation lack flexibility. Here, we present a handy device designed for electrophysiological recordings (LFPs and electroencephalography [EEG]) across multiple regions. Additionally, we seamlessly integrated optogenetic manipulation and calcium signaling recording with LFP recording. Robust after-discharges were observed in several separate regions during epileptic seizures, accompanied by increasing calcium signaling. The approach used in this study offers a convenient and flexible strategy for synchronous neural recordings across diverse regions of the brain. It holds the potential for advancing research on neurological disorders by providing insights into the neural profiles of multiple regions involved in these disorders.

Introduction

Epilepsy is a common neurological condition characterized by recurrent seizures, which manifest as convulsions, sensory disturbances, and loss of consciousness1. The pathophysiological mechanisms underlying epilepsy are complex and involve multiple interconnected brain regions2,3. Recent advances in neuroimaging have shed light on the large-scale networks involved in epilepsy4,5. However, understanding of the intricate circuitry and network mechanisms underlying the generation and propagation of epilepsy remains limited, partly ....

Protocol

This protocol received approval from the Animal Care and Use Committee at Fudan University and was conducted following the guidelines and regulations designed by the National Institutes of Health Guide for Care and Use of Laboratory Animals. All possible measures were implemented to minimize the number of animals utilized in this study. The time required to perform each step is included in the respective steps.

1. Preparation of electrodes (Figure 1.......

Representative Results

We combined optogenetics with multiregional electrophysiological recording and calcium imaging to observe neuronal activity across various brain regions during optogenetic seizures. For this purpose, an adeno-associated virus (AAV) expressing ChrimsonR under the control of the CaMKIIα promoter (AAV-CaMKIIα-ChrimsonR-mcherry)16 was injected into a classical epileptogenic site, the piriform cortex (ROI 1)17, in rodents. Additionally, AAV-hsyn-Gcamp6m

Discussion

Here, we employed a self-made optrode device for in vivo neural signal recording across multiple regions. The feasibility of this system for simultaneous optogenetic stimulation, calcium signal recording, and electrophysiological recording has been validated. The electrode preparation method described herein is efficient and cost-effective. According to the experimental design, we could record signals from relevant brain regions. The strategic arrangement of optrodes allows for the potential extraction of abunda.......

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31871085), the Natural Science Foundation of Shanghai (21ZR1407300), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology.

....

Materials

NameCompanyCatalog NumberComments
8-32 adapterPlexonCustom orderedConnect the female connector and headstage
AAV-CaMKIIα-ChrimsonR-mcherryTaitool BioscienceS0371-94 x 1012 VG/mL 
AAV-hsyn-Gcamp6mTaitool BioscienceS0471-94 x 1012 VG/mL 
DAPISigma236276Titered 1:500
Dental CementNew Century Dental430205
Electrophysiological recordings systemPlexonOmniplex
Enameled wireN/ACustom orderedDiameter = 0.2 mm
Female connectorN/ACustom ordered1.25 mm pitch
GlueLoctite45282
LaserChangchun New IndustriesBH81563635 nm 
MATLABMathWorksR2021b
MicrodrillRWD78001
Multichannel fiber photometryThinkerTechFPS-SS-MC-LED
Optical fiberXi'an BogaoL-200UMSelect the appropriate fiber length based on the depth of the targeted brain regions.
PFA-Coated Tungsten wireA-M System795500Bare 0.002"; Coated 0.0040"
Power meterThorlabsPM100D
Stereotaxic FxrameRWD68807
Tissue adhesive3M1469SB

References

  1. Devinsky, O., et al. Epilepsy. Nat Rev Dis Primers. 4, 18024 (2018).
  2. Piper, R. J., et al. Towards network-guided neuromodulation for epilepsy. Brain. 145 (10), 3347-3362 (2022).
  3. Bertram, E. H.

Explore More Articles

Neuroscience

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved