All
Research
Education
연구
교육
Business
솔루션
KR
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Türkçe
JA - 日本語
PL - Polski
RU - Русский
HE - עִברִית
AR - العربية
로그인
Chapter 19
The z-transform is a fundamental tool used in analyzing discrete-time systems, serving as the discrete-time counterpart of the Laplace transform. It ...
The z-transform converges only for certain values of z. This range of values is known as the Region of Convergence (ROC), which is essential for ...
Certain properties provide a solid foundation for analyzing discrete-time systems using the Z-transform. Considering two discrete-time signals, the ...
The property of Accumulation is derived by expressing the accumulated sum and applying the time-shifting property to solve for the Z-transform. It states ...
The inverse Z-transform is an essential tool used for converting a function from its frequency domain representation back to the time domain. Consider the ...
Most practical discrete-time systems can be represented by linear difference equations, making the z-transform a particularly useful tool. Knowing the ...
The Discrete Fourier Transform (DFT) analyzes the frequency content of discrete-time signals. It maps the N-sampled discrete time-domain sequence to its ...
개인 정보 보호
이용 약관
정책
연락처
사서에게 추천하기
JoVE 뉴스레터
JoVE Journal
연구 방법 컬렉션
JoVE Encyclopedia of Experiments
아카이브
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
JoVE Playlist
저자
사서
액세스
JoVE 소개
JoVE Sitemap
Copyright © 2025 MyJoVE Corporation. 판권 소유