We suggest a Born normalized approach for Optical Projection Tomography (BnOPT) that accounts for the absorption properties of imaged samples to obtain accurate and quantitative fluorescence tomographic reconstructions. We use the proposed algorithm to reconstruct the fluorescence molecular probe distribution within small animal organs.
Mesoscopic fluorescence tomography operates beyond the penetration limits of tissue-sectioning fluorescence microscopy. The technique is based on multi-projection illumination and a photon transport description. We demonstrate in-vivo whole-body 3D visualization of the morphogenesis of GFP-expressing wing imaginal discs in Drosophila melanogaster.
Fluorescence imaging is a promising innovative modality for image-guided surgery in surgical oncology. In this video we describe the technical procedure for detection of the sentinel lymph node using fluorescence imaging as showcased in gynecologic oncologicy. A multispectral fluorescence camera system, together with the fluorescent agent indocyanine green, is applied.
We detail a new near-infrared fluorescence (NIRF) catheter for 2-dimensional intravascular molecular imaging of plaque biology in vivo. The NIRF catheter can visualize key biological processes such as inflammation by reporting on the presence of plaque-avid activatable and targeted NIR fluorochromes. The catheter utilizes clinical engineering and power requirements and is targeted for application in human coronary arteries. The following research study describes a multimodal imaging strategy that utilizes a novel in vivo intravascular NIRF catheter to image and quantify inflammatory plaque in proteolytically active inflamed rabbit atheromata.
Optical detection of ultrasound is impractical in many imaging scenarios because it often requires stable environmental conditions. We demonstrate an optical technique for ultrasound sensing in volatile environments with miniaturization and sensitivity levels appropriate for optoacoustic imaging in restrictive scenarios, e.g. intravascular applications.
Near-infrared fluorescence (NIRF) imaging may improve therapeutic outcome of breast cancer surgery by enabling intraoperative tumor localization and evaluation of surgical margin status. Using tissue-simulating breast phantoms containing fluorescent tumor-simulating inclusions, potential clinical applications of NIRF imaging in breast cancer patients can be assessed for standardization and training purposes.
We describe an in-house designed in vitro flow chamber model, which allows the investigation of bacterial adherence to graft tissues.
Here, we present a protocol for semi-automated DNA extraction from formalin-fixed paraffin-embedded lesions of human carotid arteries. The tissue lysis is performed without toxic xylene, which is followed by an automated DNA extraction protocol, including a second lysis step, binding of DNA to paramagnetic particles for cellulose based binding, washing steps, and DNA elution.
Here we present development of a mock circulation setup for multimodal therapy evaluation, pre-interventional planning, and physician-training on cardiovascular anatomies. With the application of patient-specific tomographic scans, this setup is ideal for therapeutic approaches, training, and education in individualized medicine.
This protocol describes an iSCAT-based image processing and single-particle tracking approach that enables the simultaneous investigation of the molecular mass and the diffusive behavior of macromolecules interacting with lipid membranes. Step-by-step instructions for sample preparation, mass-to-contrast conversion, movie acquisition, and post-processing are provided alongside directions to prevent potential pitfalls.
The presented method offers an innovative way for engineering biomimetic fiber structures in three-dimensional (3D) scaffolds (e.g., heart valve leaflets). 3D-printed, conductive geometries were used to determine shape and dimensions. Fiber orientation and characteristics were individually adjustable for each layer. Multiple samples could be manufactured in one setup.
JoVE 소개
Copyright © 2025 MyJoVE Corporation. 판권 소유