We present a robust protocol on how to carefully preserve and prepare cadaveric femora for fracture testing and quantitative computed tomography imaging. The method provides precise control over input conditions for the purpose of determining relationships between bone mineral density, fracture strength, and defining finite element model geometry and properties.
In this manuscript, we present a protocol to fracture test cadaveric proximal femora in a sideways fall on the hip configuration using instrumented fixtures mounted on a standard servo hydraulic frame. Nine digitized signals comprising forces, moments, and displacement along with two high speed video streams are acquired during testing.
In this protocol, the femur surface strains are estimated during fracture testing using the digital image correlation technique. The novelty of the method involves application of a high-contrast stochastic speckle pattern on the femur surface, carefully specified illumination, high speed video capture, and digital image correlation analysis for strain calculations.
Here we describe the synthesis and use of oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as an affinity based delivery system for vancomycin.
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유