로그인

Structural Biology Group

4 ARTICLES PUBLISHED IN JoVE

image

Biochemistry

Online Size-exclusion and Ion-exchange Chromatography on a SAXS Beamline
Martha E. Brennich 1, Adam R. Round 2,3, Stephanie Hutin 4
1Structural Biology Group, European Synchrotron Radiation Facility, 2European Molecular Biology Laboratory, 3School of Chemical and Physical Sciences, Keele University, 4Groupe de Microscopie Electronique et Méthodes, Institut de Biologie Structurale

The determination of the solution structure of a protein by small angle X-ray scattering (SAXS) requires monodisperse samples. Here, we present two possibilities to ensure minimal delays between sample preparation and data acquisition: online size-exclusion chromatography (SEC) and online ion-exchange chromatography (IEC).

image

Biochemistry

Structure Solution of the Fluorescent Protein Cerulean Using MeshAndCollect
Stephanie Hutin *1, Gianluca Santoni *1, Ulrich Zander 2, Nicolas Foos 1, Sylvain Aumonier 1, Guillaume Gotthard 1, Antoine Royant 1,3, Christoph Mueller-Dieckmann 1, Gordon Leonard 1
1European Synchrotron Radiation Facility, Structural Biology Group, 2European Molecular Biology Laboratory, 3Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale)

We present the use of the MeshAndCollect protocol to obtain a complete diffraction data set, for use in subsequent structure determination, composed of partial diffraction data sets collected from many small crystals of the fluorescent protein Cerulean.

image

Biochemistry

Fully Autonomous Characterization and Data Collection from Crystals of Biological Macromolecules
Stephanie Hutin 1, Bart Van Laer 1, Christoph Mueller-Dieckmann 1, Gordon Leonard 1, Didier Nurizzo 1, Matthew W. Bowler 2
1Structural Biology Group, European Synchrotron Radiation Facility, 2Grenoble Outstation, European Molecular Biology Laboratory

Here, we describe how to use the automated screening and data collection options available at some synchrotron beamlines. Scientists send cryocooled samples to the synchrotron, and the diffraction properties are screened, the data sets are collected and processed and, where possible, a structure solution is carried out—all without human intervention.

image

Biochemistry

Analysis of SEC-SAXS data via EFA deconvolution and Scatter
Mark D Tully *1, Nicolas Tarbouriech 2, Robert P Rambo 3, Stephanie Hutin *4
1European Synchrotron Radiation Facility Structural Biology Group, Structural Biology Group, 2Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, 3Diamond Light Source, 4Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRA/BIG

SEC-BioSAXS measurements of biological macromolecules are a standard approach for determining solution structure of macromolecules and their complexes. Here, we analyze SEC-BioSAXS data from two types of commonly encountered SEC traces—chromatograms with fully resolved and partially resolved peaks. We demonstrate the analysis and deconvolution using scatter and BioXTAS RAW.

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2024 MyJoVE Corporation. 판권 소유