오직 전령RNA(messenger RNA, 줄여서 mRNA)에 전사된 유전자만이 활성화되거나 발현됩니다. 따라서 과학자들은 여러 세포와 조직의 유전자 발현을 연구하기 위해 세포에서 mRNA를 추출할 수 있습니다. 이는 역전사(reverse transcription)를 통해 mRNA를 상보적 DNA(complementary DNA, 줄여서 cDNA; 상보 DNA)로 변환해 이뤄집니다. mRNA는 인트론(intron; 비암호화 영역) 및 기타 조절 서열(regulatory sequence)을 포함하지 않기 때문에, cDNA는 유전자가 암호화하는 펩타이드(peptide)의 아미노산 서열을 과학자들이 직접 확인할 수 있게 합니다.
cDNA는 여러 가지 방법으로 생성할 수 있지만, 일반적인 방법은 먼저 세포에서 총 RNA를 추출한 다음 mRNA를 세포에 mRNA보다 많이 있는 운반RNA(transfer RNA, 줄여서 tRNA)와 리보솜 RNA(ribosomal RNA, 줄여서 rRNA)에서 분리하는 것입니다. 진핵생물(eukaryote)의 성숙 mRNA(mature mRNA)는 3’ 말단에 아데닌(adenine) 뉴클레오타이드(nucleotide)의 사슬인 폴리 A 꼬리(poly A tail)를 가지고 있지만, 다른 유형의 RNA는 그렇지 않습니다. 따라서, 타이민(thymine; 티민) 뉴클레오타이드의 사슬(oligo-dTs)을 컬럼(column)이나 자기 비드(magnetic bead)와 같은 기질(substrate)에 결합시켜 이를 이용해 mRNA의 폴리 A 꼬리와 특이적으로 염기쌍을 이루게 만들 수 있습니다. 폴리 A 꼬리를 가진 mRNA가 포착되는 동안, 다른 유형의 RNA는 씻겨 내려갑니다.
그다음, 역전사효소(reverse transcriptase; 레트로바이러스의 DNA 중합효소)를 mRNA로부터 cDNA를 생성하는 데 사용합니다. 역전사효소는 대부분의 DNA 중합효소(DNA polymerase; DNA 폴리머레이스)와 마찬가지로 사슬의 3’ 말단에만 뉴클레오타이드를 첨가할 수 있기 때문에 폴리 T 프라이머(primer; 시발체)를 추가해 cDNA 합성의 시발점을 제공합니다. cDNA 가닥은 헤어핀 구조(hairpin loop)로 끝납니다. 그런 다음 (일반적으로 알칼리 처리 또는 RNase(ribonuclease; 리보핵산가수분해효소) 효소를 사용해) RNA를 분해합니다. 단일 가닥 cDNA는 그대로 유지됩니다.
그런 다음 cDNA에 상보 되는 두 번째 DNA 가닥을 DNA 중합효소로 합성하는데, 여기서 종종 첫 번째 cDNA 가닥의 헤어핀 구조 또는 mRNA의 잘린 조각(nicked piece)을 프라이머로 사용합니다.
이렇게 얻은 이중 가닥 cDNA는 박테리아나 바이러스 벡터에 삽입되고 표준 분자 생물학 기술을 사용하여 복제될 수 있습니다. 관심 세포나 조직의 모든 mRNA를 나타내는 cDNA 라이브러리도 추가 연구를 위해 구성할 수 있습니다.
장에서 15:
Now Playing
생명 공학
29.1K Views
생명 공학
72.8K Views
생명 공학
51.9K Views
생명 공학
92.8K Views
생명 공학
30.6K Views
생명 공학
27.8K Views
생명 공학
26.2K Views
생명 공학
21.7K Views
생명 공학
13.6K Views
생명 공학
191.3K Views
생명 공학
24.9K Views
생명 공학
29.7K Views
생명 공학
48.5K Views
생명 공학
204.1K Views
생명 공학
35.3K Views
Copyright © 2025 MyJoVE Corporation. 판권 소유