로그인

Actin filaments (F-actin) are composed of actin subunits. The dissociation of actin monomers can occur from either end of F-actin. The rate of dissociation is faster from the minus-end or the pointed end, where the actin subunits exist with a bound ADP, together known as ADP-actin. The depolymerization of F-actin is aided by proteins, including the actin-depolymerizing factor (ADF) and cofilin family of proteins, gelsolin, and glia maturation factor (GMF).

In F-actin, the ADF/cofilin proteins can bind with ADP-actins in a one-to-one ratio. The actin filament twists when these proteins bind to ADP-actin, generating mechanical stress and making the filament brittle. This stress allows rapid dissociation of the cofilin bound-ADP-G-actins from the filament. The ADF/cofilin proteins are also associated with AIP-1 (actin-interacting protein1), further enhancing the dissociation rate on the minus-end.

Gelsolin is a calcium ion-activated actin-binding protein. Activated gelsolin wedges into a straight actin filament and disrupts the interactions between the actin monomers within the filament, splitting the F-actin into two. One end has a newly formed gelsolin-capped plus-end, while the other filament has a newly formed minus-end with rapidly dissociating ADP-G-actins.

The disassembly of actin filaments can also occur at branched filaments bound to the Arp2/3 complex. GMF binds to the Arp2/3 complex at the branch junction of actin networks. Upon binding, it prevents further nucleation of actin filaments from that site. GMF plays an important role in the lamellipodia formation required for cell movement and migration.

Tags
Actin Filament DepolymerizationF actin DissociationActin MonomersADP actinActin depolymerizing Factor ADFCofilin Family Of ProteinsGelsolinGlia Maturation Factor GMFADF cofilin ProteinsAIP 1 actin interacting Protein1Calcium Ion activated GelsolinActin Monomer InteractionsArp2 3 ComplexGMF Arp2 3 Complex Binding

장에서 25:

article

Now Playing

25.14 : Actin Filament Depolymerization

The Cytoskeleton I: Actin and Microfilaments

2.8K Views

article

25.1 : 세포골격 소개

The Cytoskeleton I: Actin and Microfilaments

20.2K Views

article

25.2 : 세포골격 필라멘트의 적응성

The Cytoskeleton I: Actin and Microfilaments

3.5K Views

article

25.3 : 세포골격의 극성(Polarity of the Cytoskeleton)

The Cytoskeleton I: Actin and Microfilaments

12.2K Views

article

25.4 : 세포골격 필라멘트의 조립

The Cytoskeleton I: Actin and Microfilaments

14.1K Views

article

25.5 : 세포골격 링커 단백질 - Plakins

The Cytoskeleton I: Actin and Microfilaments

2.2K Views

article

25.6 : 세포골격 부속 단백질(Cytoskeletal Accessory Proteins)

The Cytoskeleton I: Actin and Microfilaments

2.9K Views

article

25.7 : 박테리아의 세포골격 단백질

The Cytoskeleton I: Actin and Microfilaments

3.2K Views

article

25.8 : 바이러스와 박테리아의 세포 내 이동

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.9 : 세포골격 연구

The Cytoskeleton I: Actin and Microfilaments

5.6K Views

article

25.10 : Actin 소개

The Cytoskeleton I: Actin and Microfilaments

4.6K Views

article

25.11 : 액틴 중합

The Cytoskeleton I: Actin and Microfilaments

5.9K Views

article

25.12 : Actin 트레드밀링

The Cytoskeleton I: Actin and Microfilaments

7.7K Views

article

25.13 : 직선 또는 분지 actin 필라멘트의 생성

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.15 : 고차 액틴 필라멘트의 형성

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유