로그인

Introduction

One of the convenient methods for the preparation of aldehydes and ketones is via hydration of alkynes. Hydroboration-oxidation of alkynes is an indirect hydration reaction in which an alkyne is treated with borane followed by oxidation with alkaline peroxide to form an enol that rapidly converts into an aldehyde or a ketone. Terminal alkynes form aldehydes, whereas internal alkynes give ketones as the final product.

Figure1

Mechanism

The hydroboration-oxidation reaction is a two-step process. It begins with the hydroboration step, which involves a concerted syn addition of BH3 across the carbon–carbon triple bond to form an alkenylborane. The concerted nature of the reaction also accounts for the anti-Markovnikov regiochemistry, where the BH2 group adds to the less substituted carbon and H to the more substituted carbon of the triple bond.

Figure2

Three successive hydroboration reactions convert an alkene into a trialkenylborane intermediate. The second part of the sequence is oxidation, where the trialkenylborane is treated with alkaline hydrogen peroxide to form an enol. The enol eventually converts into a stable carbonyl product via keto-enol tautomerism.

Figure3

Hydroboration of Alkynes with Disubstituted Boranes

Unlike alkenes, hydroboration of alkynes does not stop at the first addition of BH3. This is because alkynes have two π bonds, each capable of reacting with BH3. The first addition forms an organoborane, which is an alkene derivative that can react further with another equivalent of BH3.

Terminal alkynes being less hindered than internal alkynes are more susceptible to a second BH3 addition. With internal alkynes, the addition of BH3 stops after the first stage and proceeds in a direction to give the trialkenylborane.

Figure4

Nevertheless, hydroboration of terminal alkynes can be stopped at the first step by using bulky disubstituted boranes (R2BH) such as disiamylborane and 9-BBN instead of BH3.

Figure5

The first addition of the bulky reagent forms a sterically hindered alkenylborane that resists any further additions and helps in the efficient conversion of alkynes to stable carbonyl compounds.

Figure6

Tags
AlkynesAldehydesKetonesHydroboration oxidationHydrationBoraneOxidationEnolMechanismRegiochemistryAlkeneTrialkenylboraneAlkaline Hydrogen PeroxideKeto enol TautomerismDisubstituted BoranesOrganoborane

장에서 9:

article

Now Playing

9.9 : Alkynes to Aldehydes and Ketones: Hydroboration-Oxidation

Alkynes

17.5K Views

article

9.1 : 알카인의 구조와 물리적 특성

Alkynes

9.6K Views

article

9.2 : 알카인즈의 명명법

Alkynes

17.1K Views

article

9.3 : 1-알카인의 산도

Alkynes

9.2K Views

article

9.4 : 알카인의 제조: 알킬화 반응

Alkynes

9.4K Views

article

9.5 : 알카인의 준비: Dehydrohalogenation

Alkynes

15.3K Views

article

9.6 : 알카인에 대한 친전자성 첨가: 할로겐화

Alkynes

8.0K Views

article

9.7 : 알카인에 친전자성 첨가: 하이드로할로겐화

Alkynes

9.7K Views

article

9.8 : 알카인에서 알데히드 및 케톤으로: 산 촉매 수분 공급

Alkynes

8.0K Views

article

9.10 : 알카인에서 카르복실산으로: 산화적 분열

Alkynes

4.6K Views

article

9.11 : 알카인에서 시스-알켄으로의 환원: 촉매 수소화

Alkynes

7.5K Views

article

9.12 : 알카인에서 트랜스 알켄으로의 환원 : 액체 암모니아의 나트륨

Alkynes

8.9K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유