로그인

The early endosome containing internalized molecules matures through transformations in its location, morphology, intraluminal pH, and membrane protein composition. Together, these changes result in a more acidic late endosome that contains multiple intraluminal vesicles; therefore, the late endosome is also called a multivesicular body (MVB).

Changes in location

The maturing endosome moves along microtubules from the periphery of the cell towards the perinuclear region. This movement of the endosome is mediated by dynein and kinesin motor proteins. Disruption of microtubules or inhibition of dynein leads to a delay in the maturation of endosomes or the dispersal of late endosomes.

Changes in intraluminal pH

The vacuolar domain of early endosomes contains V-type ATPases in its membrane. These enzymes pump protons from the cytosol into maturing endosomes. A lower intraluminal pH of the maturing endosome provides a better environment for the optimal functioning of the degradative enzymes in the maturing endosome and aids in efficient sorting of internalized molecules.

Changes in protein composition

Upon maturation, the late endosome is enriched with lysosomal hydrolases—proteins with degradative properties. Most of these hydrolases contain inhibitory domains that can inactivate their function. As the maturation progresses, these inhibitory domains are removed. Once the late endosome fuses with the lysosome, these hydrolases can degrade the endocytosed material. Additionally, the late endosome also acquires proteins called SNAREs, as well as some tethering proteins. SNAREs enable maturing endosomes to fuse with each other. Alternatively, they can later fuse with lysosomes and autophagosomes that are formed after phagocytosis.

Tags

EndosomesMaturationLocationMorphologyIntraluminal PHMembrane Protein CompositionAcidic Late EndosomeMultivesicular Body MVBMicrotubulesDyneinKinesin Motor ProteinsDisruptionInhibitionVacuolar DomainV type ATPasesProton PumpingDegradative EnzymesSortingProtein CompositionLysosomal Hydrolases

장에서 18:

article

Now Playing

18.6 : Maturation of Endosomes

Endocytosis and Exocytosis

4.0K Views

article

18.1 : 세포내이입

Endocytosis and Exocytosis

8.6K Views

article

18.2 : 식세포작용(Phagocytosis)

Endocytosis and Exocytosis

5.7K Views

article

18.3 : 피노사이토시스(Pinocytosis)

Endocytosis and Exocytosis

3.1K Views

article

18.4 : 수용체 매개 세포내이입(Receptor-mediated Endocytosis)

Endocytosis and Exocytosis

5.8K Views

article

18.5 : 초기 엔도솜: 트랜스페린의 세포내이입

Endocytosis and Exocytosis

3.2K Views

article

18.7 : Intralumenal Vesicles and Multivesicular Bodies

Endocytosis and Exocytosis

3.3K Views

article

18.8 : MVB의 수용체 하향 조절

Endocytosis and Exocytosis

2.0K Views

article

18.9 : 엑소좀(Exosomes) 개요

Endocytosis and Exocytosis

2.7K Views

article

18.10 : 엔도솜 및 트랜스사이토시스 재활용

Endocytosis and Exocytosis

2.5K Views

article

18.11 : IgG의 경세포작용(Transcytosis)

Endocytosis and Exocytosis

2.7K Views

article

18.12 : 엑소사이토시스(Exocytosis)

Endocytosis and Exocytosis

6.3K Views

article

18.13 : Secretory Vesicles 개요

Endocytosis and Exocytosis

7.1K Views

article

18.14 : 인슐린 분비 소포

Endocytosis and Exocytosis

4.8K Views

article

18.15 : 분비 소포(Secretory Vesicles)와 원형질막(Plasma Membrane)의 융합

Endocytosis and Exocytosis

9.5K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유