로그인

Microtubule function and architecture are regulated by an array of specialized proteins called microtubule-associated proteins or MAPs. These proteins are widespread across different organisms and have conserved protein motifs, like the multi-TOG domain for tubulin binding found in the CLASP family of MAPs. Some MAPs are lineage-specific based on their conserved domains. Their functions depend upon the cytoskeletal architecture and cell type they are located within. In-plant cells, a specific microtubule-associated protein‒ tortifolia, binds with cortical microtubules to regulate organ the orientation and direction of organ growth. On the other hand, tau proteins are specifically associated with microtubules in neurons in animal cells. MAPs were first identified within neurons and were named “classical MAPs''.

Depending on how MAPs regulate microtubules, they are broadly classified as stabilizers, destabilizers, capping proteins, crosslinkers, and cytoskeleton integrator proteins. MAPs are further classified based on where they localize on the microtubules. They are broadly divided into three groups: Lattice-binding proteins, microtubule plus-end trafficking proteins, and minus-end targeting proteins. Lattice binding proteins bind along the filament length instead of the microtubule plus or minus end. Tau and MAP2 found in neurons' axonal and dendritic microtubules belong to the lattice-binding MAPs. Microtubule plus-end trafficking proteins include proteins that target the growing end of the microtubules. Examples include EB1, XMAP-215, and kinesin-13. EB1 and XMAP-215 are microtubule-stabilizing and growth-promoting proteins, while kinesin-13 is a microtubule destabilizer. Minus-end targeting proteins include microtubule formation initiator proteins like the γ-tubulin ring complex (γ-TRC) and capping proteins like the calmodulin regulated spectrin-associated protein family (CAMSAPs) members. CAMSAPs bind to the minus-end of microtubules to stabilize them and prevent the dissociation of the tubulin subunits.

The dynamic structure of microtubules varies throughout the cell cycle. During interphase, the microtubule network transports organelles and vesicles and helps organize the cytoskeleton within the cell. As the cell enters into a dividing phase, the previous microtubule mesh disassembles and reorganizes into mitotic spindles that aid in separating chromosomes and cytokinesis. These functions and variability of microtubules are possible due to the various MAPs present within the cell.

Tags
Microtubule associated ProteinsMAPsSpecialized ProteinsMicrotubule FunctionMicrotubule ArchitectureConserved Protein MotifsMulti TOG DomainCLASP FamilyLineage specific MAPsCytoskeletal ArchitectureCell TypeIn plant CellsTortifoliaCortical MicrotubulesOrgan OrientationOrgan GrowthTau ProteinsNeuronsClassical MAPsStabilizersDestabilizersCapping ProteinsCrosslinkersCytoskeleton Integrator ProteinsLattice binding ProteinsMicrotubule Plus end Trafficking ProteinsMinus end Targeting Proteins

장에서 26:

article

Now Playing

26.4 : Microtubule Associated Proteins (MAPs)

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.9K Views

article

26.1 : 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

6.9K Views

article

26.2 : 미세소관 불안정성

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.3K Views

article

26.3 : 미세소관 형성

The Cytoskeleton II: Microtubules and Intermediate Filaments

5.3K Views

article

26.5 : 미세소관의 불안정화

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.5K Views

article

26.6 : 미세소관 관련 운동 단백질

The Cytoskeleton II: Microtubules and Intermediate Filaments

7.4K Views

article

26.7 : 소기관(organelles)과 소포(vesicles)의 움직임

The Cytoskeleton II: Microtubules and Intermediate Filaments

4.2K Views

article

26.8 : 복잡한 미세소관 구조의 조립

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.8K Views

article

26.9 : 세포 운동성의 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.1K Views

article

26.10 : 섬모 운동의 메커니즘

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Views

article

26.11 : 신호전달에서의 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.7K Views

article

26.12 : 미세소관을 안정화시키는 약물

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.13 : 미세소관을 불안정하게 만드는 약물

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.14 : 중간 필라멘트의 구조

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.7K Views

article

26.15 : 중간 필라멘트의 종류

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유