로그인

Intermediate filaments are cytoskeletal proteins with higher tensile strength and flexibility than microfilaments and microtubules. Unlike the other two cytoskeletal proteins, intermediate filament formation lacks the enzymatic activity to hydrolyze nucleotides like ATP and GTP to generate energy for polymerization. Therefore, the formation of intermediate filaments is multistep self-assembly. The involvement of any accessory proteins in intermediate filament formation has not yet been reported.

The multi-step process uses two types of associations: lateral association, i.e., side-to-side binding, and longitudinal association, i.e., head-to-tail binding. The monomeric core is similar across different intermediate filaments with a tripartite structure, with an α-helical rod domain flanked by two non-α-helical domains. The formation starts with the lateral association of two monomers forming a dimer. Depending on the type of monomer, the dimer can be homodimeric, made up of identical monomers, or heterodimeric, made up of two different types of monomers. These dimers then associate in an antiparallel manner to form a tetramer. Eight tetramers associate laterally to form a bundle, called the unit length filament or ULF. The ULF is 60 nm in length and 10 nm in diameter. These unit-length filaments arrange in a head-to-tail manner to form the intermediate filaments.

Tags

Intermediate FilamentsCytoskeletal ProteinsTensile StrengthFlexibilityMicrofilamentsMicrotubulesEnzymatic ActivityNucleotidesATPGTPPolymerizationSelf assemblyAccessory ProteinsLateral AssociationLongitudinal AssociationMonomeric CoreTripartite StructureAlpha helical Rod DomainNon alpha helical DomainsDimerHomodimericHeterodimericAntiparallel MannerTetramerUnit Length Filament ULFBundleHead to tail Arrangement

장에서 26:

article

Now Playing

26.16 : Formation of Intermediate Filaments

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.8K Views

article

26.1 : 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

6.9K Views

article

26.2 : 미세소관 불안정성

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.3K Views

article

26.3 : 미세소관 형성

The Cytoskeleton II: Microtubules and Intermediate Filaments

5.3K Views

article

26.4 : 미세소관 관련 단백질(MAP)

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.9K Views

article

26.5 : 미세소관의 불안정화

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.5K Views

article

26.6 : 미세소관 관련 운동 단백질

The Cytoskeleton II: Microtubules and Intermediate Filaments

7.4K Views

article

26.7 : 소기관(organelles)과 소포(vesicles)의 움직임

The Cytoskeleton II: Microtubules and Intermediate Filaments

4.2K Views

article

26.8 : 복잡한 미세소관 구조의 조립

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.8K Views

article

26.9 : 세포 운동성의 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.1K Views

article

26.10 : 섬모 운동의 메커니즘

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Views

article

26.11 : 신호전달에서의 미세소관

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.7K Views

article

26.12 : 미세소관을 안정화시키는 약물

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.13 : 미세소관을 불안정하게 만드는 약물

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.14 : 중간 필라멘트의 구조

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.7K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유