로그인

Lysosomes are membrane-enclosed spherical sacs derived from the Golgi apparatus. The most important function of the lysosome is degrading macromolecules and biological polymers that are released during membrane trafficking events such as the secretory, endocytic, autophagic, and phagocytic pathways. The degradation is carried out by several hydrolytic enzymes active in an acidic environment of the lysosomal lumen. These acid hydrolases are involved in cellular processes such as cell signaling, energy metabolism, restoration of the plasma membrane, counting discharged materials.

Newly formed lysosomes derived from the inner Golgi sacs, called primary lysosomes, are dynamic and can divide or fuse with macromolecules, other subcellular organelles, and the plasma membrane. Once the primary lysosomes fuse with substances to be degraded, they become secondary lysosomes. Depending on the pathway they are involved in, they become phagosomes, endo-lysosome, digestive vacuoles, and autophagosomes. There is no clear distinction between them other than their involvement in different membrane traffic pathways. Thus, they represent morphologically diverse organelles, defined by a common function of degrading intracellular material.

Secretory lysosomes, a specialized set of lysosomes, have features of both conventional lysosomes and secretory granules. Due to this, they are abundant in some cell types, such as macrophages, hematopoietic cells, and melanocytes. Secretory lysosomes secrete antimicrobial proteins and cytokines in addition to lysosomal enzymes. Hence, they are involved in pigmentation, coagulation, wound repair, and immunologic functions.

Plant cells contain vacuoles filled with hydrolytic enzymes similar to lysosomes but are functionally diverse. In addition to degradation, they have a role in storing both nutrients and waste products and controlling turgor pressure.

Tags
LysosomesMembrane enclosed SacsGolgi ApparatusDegradationMacromoleculesBiological PolymersMembrane TraffickingSecretory PathwayEndocytic PathwayAutophagic PathwayPhagocytic PathwayHydrolytic EnzymesAcidic EnvironmentCell SignalingEnergy MetabolismPlasma Membrane RestorationPrimary LysosomesDynamicDivisionFusionSecondary LysosomesPhagosomesEndo lysosomeDigestive VacuolesAutophagosomesMorphologically Diverse OrganellesIntracellular Material DegradationSecretory Lysosomes

장에서 17:

article

Now Playing

17.18 : Lysosomes

Intracellular Membrane Traffic

13.2K Views

article

17.1 : 멤브레인 트래픽 소개

Intracellular Membrane Traffic

6.1K Views

article

17.2 : COP 코팅 소포

Intracellular Membrane Traffic

7.1K Views

article

17.3 : Clathrin 코팅 소포

Intracellular Membrane Traffic

6.2K Views

article

17.4 : 포스포이노시티드 및 PIP

Intracellular Membrane Traffic

6.3K Views

article

17.5 : 코팅 어셈블리 및 GTPase

Intracellular Membrane Traffic

3.4K Views

article

17.6 : 코팅된 소포의 핀칭 오프(Pinching-off)

Intracellular Membrane Traffic

2.8K Views

article

17.7 : Rab 단백질

Intracellular Membrane Traffic

3.7K Views

article

17.8 : 랍 캐스케이드

Intracellular Membrane Traffic

2.6K Views

article

17.9 : SNAREs 및 멤브레인 융합

Intracellular Membrane Traffic

8.2K Views

article

17.10 : 소포 관형 클러스터

Intracellular Membrane Traffic

2.2K Views

article

17.11 : 응급실 회수 경로

Intracellular Membrane Traffic

3.5K Views

article

17.12 : 골지체(Golgi) 장치

Intracellular Membrane Traffic

10.3K Views

article

17.13 : 단백질 당화(Glycosylation)

Intracellular Membrane Traffic

6.3K Views

article

17.14 : 프로테오글리칸

Intracellular Membrane Traffic

3.8K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유