로그인

Chromatin immunoprecipitation, or ChIP, is an antibody-based technique used to identify sites on DNA that bind to transcription factors of interest or histone proteins. It also helps determine the type of histone modifications such as acetylation, phosphorylation, or methylation.

Types of ChIP

ChIP can be divided into two types - X-ChIP and N-ChIP. X-ChIP involves in vivo cross-linking of histones and regulatory proteins to DNA, fragmenting the DNA by sonication, and isolating the protein-DNA complexes by immunoprecipitating them with specific antibodies. On the other hand, N-ChIP does not involve cross-linking of DNA to proteins, and digestion is carried out using nucleases.

Downstream analysis of DNA - protein interactions

After isolating the DNA of interest, techniques such as PCR, microarrays, or southern blot can be used for analysis. Alternatively, this DNA can be used for deep sequencing, known as ChIP-Seq. ChIP can be modified using other methodologies for different analysis such as ChIA-PET, a technique that combines the principles of ChIP with chromosome conformation capture to detect long-range chromatin interactions mediated via a protein of interest; enChIP, a technique which employs the CRISPR/Cas9 system to target specific genomic regions and RIP-ChIP/RIP-Seq, a modification of ChIP used to analyze protein-RNA interactions.

Comparison between N-ChIP and X-ChIP

N-ChIP and X-ChIP have their own advantages and disadvantages. N-ChIP results in stronger antibody binding and efficient and highly specific immuno-precipitation. However, N-ChIP is suitable only in the case of tightly bound proteins such as histones, as transcription factors may get detached during processing. Additionally, not all of the nuclease-digested chromatin gets solubilized, resulting in the missing out of certain fractions of the sample. X-ChIP is an excellent methodology for studying transcription factors that are not bound tightly to the DNA due to its cross-linking step. X-ChIP assay is also more sensitive than N-ChIP and requires lower amounts of samples as well as antibodies. Disadvantages of X-chip include possible difficulty in fragmentation due to excess cross-linking and false positives due to the cross-linking of transient-DNA protein interactions.

Tags

Chromatin ImmunoprecipitationChIPAntibody based TechniqueDNA Binding SitesTranscription FactorsHistone ProteinsHistone ModificationsAcetylationPhosphorylationMethylationX ChIPN ChIPIn Vivo Cross linkingSonicationImmunoprecipitatingSpecific AntibodiesNucleasesDownstream AnalysisPCRMicroarraysSouthern BlottingChIP SeqChIA PETChromosome Conformation CaptureEnChIPCRISPR Cas9 SystemRIP ChIP RIP Seq

장에서 16:

article

Now Playing

16.13 : Chromatin Immunoprecipitation- ChIP

유전자 발현과 기능의 분석

10.8K Views

article

16.1 : 체외 돌연변이 유발

유전자 발현과 기능의 분석

4.0K Views

article

16.2 : 유전자 검사

유전자 발현과 기능의 분석

4.8K Views

article

16.3 : 크로스 테스트

유전자 발현과 기능의 분석

1.7K Views

article

16.4 : 보완 테스트

유전자 발현과 기능의 분석

4.7K Views

article

16.5 : 단일 뉴클레오티드 다형성-SNP

유전자 발현과 기능의 분석

13.5K Views

article

16.6 : 박테리아 형질전환

유전자 발현과 기능의 분석

11.6K Views

article

16.7 : 형질전환 유기체

유전자 발현과 기능의 분석

3.8K Views

article

16.8 : 생식 클로닝

유전자 발현과 기능의 분석

2.3K Views

article

16.9 : 크리스퍼

유전자 발현과 기능의 분석

15.0K Views

article

16.10 : 실험용 RNAi

유전자 발현과 기능의 분석

6.0K Views

article

16.11 : 리포터 유전자

유전자 발현과 기능의 분석

11.0K Views

article

16.12 : In-situ 하이브리드화

유전자 발현과 기능의 분석

9.0K Views

article

16.14 : 합성생물학

유전자 발현과 기능의 분석

4.6K Views

article

16.15 : 리보솜 프로파일링

유전자 발현과 기능의 분석

3.4K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유