로그인

Cohesin protein complexes are a molecular glue that holds two sister chromatids together. They play an important role both in mitosis and meiosis. In mitosis, all cohesin complexes present on the chromosomes are removed before the start of the anaphase stage.

Cohesin complexes in Meiotic Division

Meiosis involves two distinct rounds of chromosomal segregation and cell divisions— Meiosis I followed by Meiosis II – producing four daughter cells. Meiosis I includes the separation of homologous chromosomes, whereas Meiosis-II involves the separation of sister chromatids.

The Meiosis I cohesin complex consists of four subunits – Smc1, Smc3, Rec8 (replacing Scc1 from mitotic cohesin complex), and Scc3 – forming a ring-like structure.

During Meiosis I, entire chromosomes segregate towards the opposite poles as cohesin removal takes place only from the chromosomal arms. Cohesin is still maintained at the centromere region, allowing the sister chromatids to remain connected. During the metaphase I to anaphase I transition, the differential cohesin removal is facilitated by the separase-mediated cleavage of the Rec8 subunit of cohesins along the chromosomal arms. The centromeric Rec8 is protected from cleavage by association with a protector protein Shugoshin (Sgo1).

Cohesinopathies

Cohesins contribute to the maintenance of genomic stability. Mutations in genes coding for cohesin subunits or cohesin co-factors can lead to diseases called cohesinopathies. Cornelia de Lange syndrome (CdLS) and Roberts syndrome are two best-described cohesinopathies. CdLS is a neurodevelopmental disorder causing mental retardation, facial dysmorphism, upper limb abnormalities, and growth delay. Roberts syndrome results in craniofacial abnormalities, limb reduction, and growth retardation in affected patients.

Tags

CohesinsCohesin Protein ComplexesSister ChromatidsMitosisMeiosisAnaphaseMeiosis IMeiosis IIHomologous ChromosomesSmc1Smc3Rec8Scc3Ring like StructureChromosomal ArmsCentromere RegionMetaphase IAnaphase I TransitionSeparase mediated CleavageRec8 SubunitProtector Protein Shugoshin Sgo1Cohesinopathies

장에서 18:

article

Now Playing

18.3 : Cohesins

세포의 분열

4.2K Views

article

18.1 : 유사분열(Mitosis)과 사이토키네시스(Cytokinesis)

세포의 분열

20.3K Views

article

18.2 : 염색질 구조의 복제

세포의 분열

5.2K Views

article

18.4 : 응축수

세포의 분열

3.2K Views

article

18.5 : 유사 분열 스핀들

세포의 분열

6.1K Views

article

18.6 : 중심솜 복제

세포의 분열

3.8K Views

article

18.7 : 미세소관 불안정성

세포의 분열

4.9K Views

article

18.8 : 스핀들 어셈블리

세포의 분열

3.4K Views

article

18.9 : 자매 염색체의 부착

세포의 분열

3.0K Views

article

18.10 : 염색체에 작용하는 힘

세포의 분열

3.2K Views

article

18.11 : 자매 염색분체의 분리

세포의 분열

3.5K Views

article

18.12 : 스핀들 어셈블리 체크포인트

세포의 분열

3.1K Views

article

18.13 : 아나페이즈 A 및 B

세포의 분열

3.8K Views

article

18.14 : 수축 고리

세포의 분열

6.1K Views

article

18.15 : 세포 분열의 평면 결정

세포의 분열

3.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유