로그인

After folding, the ER assesses the quality of secretory and membrane proteins. The correctly folded proteins are cleared by the calnexin cycle for transport to their final destination, while misfolded proteins are held back in the ER lumen. The ER chaperones attempt to unfold and refold the misfolded proteins but sometimes fail to achieve the correct native conformation. Such terminally misfolded proteins are then exported to the cytosol by ER-associated degradation or ERAD pathway for degradation.

Different modes of ERAD pathways

Hrd1 is a ubiquitin ligase and a retro-translocation channel for misfolded polypeptides. It complexes with another membrane protein, Hrd3, to form the core ERAD machinery. The other players associated with these core proteins depend upon the topology of the misfolded protein. The retrotranslocation complex depends on the luminal lectin chaperones to identify misfolded proteins. Studies in the yeast system suggest the presence of ERAD-C, ERAD-L, and ERAD-M pathways to export misfolded proteins from various parts of the ER. The target proteins of the ERAD-L and ERAD-M pathways use the Hrd1 channel to exit the ER lumen and membrane, respectively, while the ERAD-C pathway utilizes the Doa10p ubiquitin ligase complex to degrade the cytoplasmic domains of the ER membrane proteins. Sometimes, these pathways can overlap as some misfolded proteins need translocation machinery from two different ERAD pathways to exit the ER. The mammalian ERAD machinery is more complex than yeast and has multiple proteins that export and mark proteins for proteasomal degradation. Eventually, all ERAD pathways converge due to their dependence on a cytoplasmic AAA-ATPase to provide the mechanical force to extract proteins through the membrane.

Degradation of non-glycosylated proteins

The ER has another lectin-independent system that monitors and clears the non-glycosylated proteins from ER. It consists of the resident ER chaperone, BiP protein, and the ER-localized DnaJ family members (ERdjs). ER stress induces the production of HERP, a ubiquitin-like membrane protein, which assembles with other ERAD proteins like the Hrd1 and AAA-ATPase, forming a complex. BiP uses some ERdj proteins as cofactors to recruit non-glycosylated misfolded proteins to the HERP complex for retrotranslocation and ubiquitination of the misfolded protein. HERP is associated with the proteasome on the cytosolic side, where it delivers the misfolded proteins for degradation.

Tags
ERMisfolded ProteinsER associated DegradationERADHrd1Hrd3ERAD CERAD LERAD MDoa10pBiPHERPAAA ATPaseUbiquitinationRetrotranslocationChaperonesER StressNon glycosylated Proteins

장에서 15:

article

Now Playing

15.14 : Export of Misfolded Proteins out of the ER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.3K Views

article

15.1 : 소포체(Endoplasmic Reticulum)

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

8.7K Views

article

15.2 : 부드러운 소포체

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.1K Views

article

15.3 : 분비 경로에서 ER의 역할

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.5K Views

article

15.4 : 단백질을 거친 소포체로 유도

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.8K Views

article

15.5 : ER 멤브레인의 단백질 전좌 기계

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.1K Views

article

15.6 : 동종 단백질 전좌(Cotranslational Protein Translocation)

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.7K Views

article

15.7 : RER로 단백질의 post-translational translocation

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.3K Views

article

15.8 : RER에 Single-pass transmembrane proteins 삽입

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.1K Views

article

15.9 : RER에 Multi-pass transmembrane proteins 삽입

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.5K Views

article

15.10 : ER 막에서 단백질의 꼬리 고정

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

article

15.11 : ER 막에 단백질의 GPI 앵커링

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.8K Views

article

15.12 : RER의 단백질 변형

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.7K Views

article

15.13 : RER의 단백질 접힘 품질 검사

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.5K Views

article

15.15 : 풀린 단백질 반응

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유