로그인

Dieckmann cyclization is an intramolecular Claisen condensation of diesters. The reaction occurs in the presence of a base and generates a cyclic β-ketoester as the final product. Commonly, 1, 6and 1, 7-diesters are preferred substrates for the reaction since the generated five,and six-membered cyclic β-keto esters are particularly more stable.

Figure1

In the reaction, α carbon connected to one end of the ester ends serves as an enolate nucleophile after losing its proton to the base. The carbonyl carbon of the ester group at the other end of the same molecule functions as the electrophilic site. The enolate, through an intramolecular nucleophilic attack on the carbonyl carbon, cyclizes the molecule to form a stable ring intermediate. The intermediate reacts with the base and generates another enolate ion, which is neutralized to form the final β-ketoester. The second deprotonation step is the driving force for the reaction to go to completion.

The formed product can undergo alkylation and decarboxylation to produce substituted cyclic ketones.

Figure2

Tags

Dieckmann CyclizationIntramolecular Claisen CondensationDiestersketoesterFive membered RingSix membered RingEnolateNucleophilic AttackCarbonylCyclic IntermediateDecarboxylationSubstituted Cyclic Ketones

장에서 15:

article

Now Playing

15.29 : Intramolecular Claisen Condensation of Dicarboxylic Esters: Dieckmann Cyclization

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.2K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.3 : 에놀(Enol)과 에놀라산(Enolate)의 종류

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.9 : 메틸 케톤의 다중 할로겐화: Haloform 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유