JoVE Logo

로그인

15.30 : β-Dicarbonyl Compounds via Crossed Claisen Condensations

Crossed Claisen condensations are base-promoted reactions between two different ester molecules producing β-dicarbonyl compounds. The reaction involving esters, with both containing α hydrogen, results in a mixture of four different products that are difficult to isolate. This reduces the synthetic utility of the reaction.

Figure1

This problem is resolved by using one of the esters without any α hydrogen, such as aryl esters.

Figure2

Additionally, highly reactive molecules like formate esters serve as effective electrophilic partners in cross Claisen condensation.

Figure3

Similarly, less reactive esters with no α protons make the reaction feasible when present in excess quantity.

Figure4

Another approach to obtain an efficient cross Claisen condensation is the use of a strong, sterically hindered base—LDA. It irreversibly deprotonates one of the esters to enolate, while the other ester acts as an electrophile.

Figure5

A variation of crossed Claisen condensation is the reaction of ketones with esters, wherein the enolate of ketone attacks the carbonyl center of the ester producing ꞵ-dicarbonyl compounds.

Figure6

Tags

Dicarbonyl CompoundsCrossed Claisen CondensationsEster ReactionsEnolate FormationLDAhydrogenAryl EstersFormate EstersKetone ester Condensation

장에서 15:

article

Now Playing

15.30 : β-Dicarbonyl Compounds via Crossed Claisen Condensations

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.3 : 에놀(Enol)과 에놀라산(Enolate)의 종류

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.5K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.9 : 메틸 케톤의 다중 할로겐화: Haloform 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.4K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유