로그인

A close look at earthquakes provides evidence for the conditions appropriate for resonance, standing waves, and constructive and destructive interference. A building may vibrate for several seconds with a driving frequency matching the building's natural frequency of vibration; this produces a resonance that results in one building collapsing while the neighboring buildings do not. Often, buildings of a certain height are devastated, while other taller buildings remain intact. This phenomenon occurs because the building height matches the condition for setting up a standing wave for that particular height. As the earthquake waves travel along the surface of the Earth and reflect off denser rocks, constructive interference occurs at specific points. Often, areas closer to the epicenter are not damaged, while areas farther away are damaged.

On the other hand, standing waves on strings have frequencies related to the propagation speed of the disturbance on the string. The distance between the points where the string is fixed determines the wavelength. The symmetrical boundary conditions—a node at each end—dictate the possible frequencies that can excite standing waves. Starting from a frequency of zero and slowly increasing the frequency, the first mode, n = 1, appears. The first mode, also called the fundamental mode or the first harmonic, corresponds to half a wavelength, so the wavelength is equal to twice the length between the nodes. The successive normal modes are called overtones: the first overtone corresponds to the second harmonic, and so on. In this case, the mathematical pattern reveals that the successive harmonic frequencies are integral multiples of the first harmonic.

Tags
Standing WavesResonanceConstructive InterferenceDestructive InterferenceNatural FrequencyEarthquake EffectsBuilding VibrationEpicenter DamagePropagation SpeedWavelengthsBoundary ConditionsFundamental ModeFirst HarmonicOvertonesHarmonic Frequencies

장에서 16:

article

Now Playing

16.14 : Modes of Standing Waves - I

Waves

2.8K Views

article

16.1 : 트래블링 웨이브

Waves

4.8K Views

article

16.2 : 웨이브 매개 변수

Waves

5.7K Views

article

16.3 : 파동 운동의 방정식

Waves

4.0K Views

article

16.4 : Wave 함수 그래프 작성하기

Waves

1.5K Views

article

16.5 : 파도의 속도와 가속도

Waves

3.7K Views

article

16.6 : 횡파의 속도

Waves

1.4K Views

article

16.7 : 문제 해결: 기타 현 튜닝

Waves

362 Views

article

16.8 : 파동의 운동 및 위치 에너지

Waves

3.4K Views

article

16.9 : 파도의 에너지와 힘

Waves

3.3K Views

article

16.10 : 파동의 간섭과 중첩

Waves

4.6K Views

article

16.11 : 파도의 반사

Waves

3.6K Views

article

16.12 : 파도의 전파

Waves

2.2K Views

article

16.13 : 정상파

Waves

2.9K Views

article

16.15 : 정상파의 모드: II

Waves

778 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유